专题:222命题公理定理
-
真命题与公理、定理
真命题与公理、定理
初学几何的同学,对真命题、公理、定理之间的区别与联系容易混淆。现作如下辨析,供同学们参考。
真命题就是正确的命题,即如果命题的题设成立,那么结论一定成 -
命题与证明之公理定理[推荐阅读]
公理和定理教学要求:1 了解公理与定理到概念,以及他们之间的内在联系;2 了解公理与定理都是真命题,它们都是推理论证的依据;3 掌握教材十条公理和已学过的定理。重点难点十条公理
-
高中数学立体几何模块公理定理
高中数学立体几何模块公理定理汇编
Hzoue/2009-12-12
公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
Al,Bl,且Aα,Bαlα.(作用:证明直线在平面内)
公理2 过不在 -
证明、公理、平行线性质定理(合集)
证明的必要性、公理与定理、平行线的判定(公)定理、平行线的性质(公)定理基础知识1.证明:2.公理:3.定理:4.等量代换:公理:5.平行线的判定定理:定理:公理6.平行线的性质定理定理:基础习
-
定义 定理 公理 定律的区别
1 / 2
定义、定理、定律和定则表面上看定义、定理和定律都是由一些文字性的叙述加上数学表达式所组成,形式上确实差别不大,而老师上课往往会注重了它们在应用方面的讲授,忽略了 -
初一数学中的公理定理
(一)学过的公理: 1、直线公理:两点确定一条直线。 2、线段公理:两点之间,线段最短。 3、垂线公理:过一点有且只有一条直线与已知直线垂直。 4、平行公理:过直线外一点,有且只有一条直
-
命题与定理教案
设计者:重庆西藏中学聂志 19.1 命题与定理 教学目标 1、知识与技能:(1)了解命题的含义;(2)对命题的概念有正确的理解(3)会区分命题的条件和结论,并会对命题进行改写,(4)知道判断一个命题
-
命题与定理教案
命题与定理 第一课时教学内容:命题 教学目标:了解命题、定义的含义;对命题的概念有正确的理解。会区分命题的题设和结论。知道判断一个命题是假命题的方法。 教学重点:找出命题
-
命题、定理和证明教案
命题、定理、证明 重点:命题、定理、证明的概念 难点:命题、定理、证明的概念 一、板书课题 ,揭示目标 同学们,到现在为止,我们已经学习了一些简单的性质、判定、定义,这些命题都
-
09命题、定理、证明
第9节命题、定理、证明
【学习目标】
A级:掌握命题的定义,结构,分类
B级:会将命题改成“如果„„,那么„„”的形式,并由此找出题设和结论部分 C级:会使用反例来说明一个命题是假命 -
命题定理证明教案
5、3命题定理证明教案 学习目标: (1)了解命题的概念以及命题的构成(如果……那么……的形式).(2)知道什么是真命题和假命题. (3)理解什么是定理和证明. (4)知道如何判断一个命题的真假. 学
-
高二数学 立体几何的概念、公理、定理
立体几何的概念、公理、定理王 春 老师 编辑 2007-12 -20一.写出以下公理、定理,并根据图形写出它们的条件与结论。(一)立体几何三公理公理1:如果一条直线上的两点在一个平面内,那
-
经典命题逻辑公理系统定理证明算法设计
Http://logic.zsu.edu.cn/journal.htm 逻辑与认知 Vol.2, No.4, 2004---收稿日期:2004-11-25;作者简介:杜国平,1965 年生,男,汉族,江苏盱眙人,南京大学副教授。基金项目:国家社科基金
-
初中几何证明的所有公理和定理
初中几何证明的所有公理和定理 1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等 4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直 6 直
-
命题、定理、证明-导学案
《命题、定理、证明》导学案 一、 学习目标:
知识点: 1了解命题、定理和证明的概念,能区分命题的题设和结论,2能判断命题的真假
3能对命题的正确性进行证明 重点:命题的判断及区 -
《命题、定理》教学反思(合集五篇)
命题、定理(教学反思) 本节课的主要内容是命题、定理。是以后学习推理证明的基础,更是培养学生有条理的思考和表达的一个重要环节。为此,我做了如下思考:在课前延伸部分,我让学生
-
19.1 命题与定理教案
19.1 命题与定理 第一课时 命题 教学目标 1、知识与技能:了解命题、定义的含义;对命题的概念有正确的理解。会区分命题的条件和结论。知道判断一个命题是假命题的方法。 2、
-
初三数学证明及相关公理、定理、推论(共5篇)
第一次课:证明及相关公理、定理、推论一、考点、热点回顾1、《证明(一)》知识点回顾:全等三角形的四个公理和一个推论公理三遍对应相等的两个三角形全等。(SSS)公理两边及其夹角