专题:初中韦达定理练习题
-
初中数学之韦达定理
初中数学之韦达定理
韦达定理:对于一元二次方程ax2bxc0(a0),如果方程有两个实数根
bcx1,x2,那么x1x2,x1x2 aa
说明:定理成立的条件01.不解方程写出下列方程的两根和与两根差
(1)x2 -
韦达定理教案(大全五篇)
教案:韦达定理 一、教学目标 1.通过根与系数的关系的发现与推导,进一步培养学生分析、观察、归纳、猜想的能力和推理论证的能力; 2.通过本节课的学习,向学生渗透由特殊到一般,再
-
韦达定理推广的证明
证明: 当Δ=b^2-4ac≥0时,方程 ax^2+bx+c=0(a≠0) 有两个实根,设为x1,x2. 由求根公式x=(-b±√Δ)/2a,不妨取 x1=(-b-√Δ)/2a,x2=(-b+√Δ)/2a, 则:x1+x2 =(-b-√Δ)/2a+(-b+√Δ
-
韦达定理代数式的值教案
根与系数的关系2 教学目标: 1、 会利用韦达定理求出与根有关的代数式的值 2、 学会灵活多变的代数式变形 3、 会求作新方程 一、知识回顾 1、设、 代数式是方程= 。 的两根
-
关于判别式法与韦达定理的论述
关于判别式法与韦达定理论述weiqingsong摘要:判别式法与韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,讨论
-
读书笔记韦奇定理
每个人一生中都做出各种决策,大到择业、婚恋,小到出行、购物等。而借用老马的话,人又是一种社会性动物,周围都有家人、亲戚、朋友和同事等人际交往圈。因此,在准备做出决策时,不可
-
初中定理
初中几何证明的依据
1.两点连线中线段最短.
2.同角(或等角)的余角相等. 同角(或等角)的补角相等.对顶角相等.
3.平面内经过一点有且只有一条直线与已知直线垂直. 直线外一点与 -
初中数学相关定理[范文大全]
1,三角形内角和定理三角形三个内角的和等于180°
2, 推论1直角三角形的两个锐角互余
3, 推论2三角形的一个外角等于和它不相邻的两个内角的和
4,推论3三角形的一个外角大于 -
正弦定理和余弦定理练习题(五篇材料)
【正弦定理、余弦定理模拟试题】 一. 选择题: 1. 在ABC中,a23,b22,B45,则A为 A.60或120B.60C.30或150D.30 sinAcosB2. 在C中,若,则B abB.45C.60D.90 A.303. 在ABC中,a2b2c2bc,则A等
-
中心极限定理-第四章练习题
1、一仪器同时受到108个噪声信号Xi,设它们是相互独立的且都服从[0,4]上的均匀分布.求噪声信号总量X解:EXXi1108i 228的概率. 108EXi1108i216,DXDXi144.i1由中心极限定理P{X228}1
-
著名定理证明(初中)
24.著名定理证明(14分)(该题有六个小题,须选做两个,全对才给分,每个七分,多做满分也是14分)(1)试证明海伦公式:S三角形=√p(p-a)(p-b)(p-c),(p=三角形周长的一半)试证明角平分线定理
-
初中数学几何定理集锦
初中数学几何定理集锦
1。同角(或等角)的余角相等。
3。对顶角相等。
5。三角形的一个外角等于和它不相邻的两个内角之和。
6。在同一平面内垂直于同一条直线的两条直线是平行 -
初中平面几何重要定理汇总
初中平面几何重要定理汇总 1、勾股定理(毕达哥拉斯定理)(直角三角形的两直角边分别是a、b,斜边是c;则a*a+b*b=c*c) 2、射影定理(欧几里得定理)(直角三角形中,斜边上的高是两直角
-
初中数学常用定理(精选5篇)
1圆是定点的距离等于定长的点的集合
2圆的内部可以看作是圆心的距离小于半径的点的集合
3圆的外部可以看作是圆心的距离大于半径的点的集合
4同圆或等圆的半径相等
5到定点 -
初中数学定理证明
初中数学定理证明数学定理三角形三条边的关系定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和三角形内角和定理三角形三个内角的和等于180°推论1直
-
广东省徐闻县梅溪中学2013届中考数学第二轮复习专题 判别式与韦达定理
广东省徐闻县梅溪中学2013届中考数学第二轮复习专题 判别式与韦
达定理
〖知识点〗
一元二次方程根的判别式、判别式与根的个数关系、判别式与根、韦达定理及其逆定理 〖大 -
正弦定理、余弦定理练习题(学生版)[精选]
正弦定理、余弦定理练习题
一、选择题
1.在△ABC中,A=60°,B=75°,a=10,则c=
A.52B.102C.6
3D.6
2.(2010·茂名调研)已知a,b,c是△ABC三边之长,若满足等式(a+b-c)(a+b+c)=ab,则角C的大小为
A.60 -
正弦定理与余弦定理练习题(5篇模版)
正弦定理与余弦定理
1.△ABC的内角A、B、C的对边分别为a、b、c,若c=2,b=6,B=120°,则a等于2.在△ABC中,角A、B、C的对边分别为a、b、c,若(a+c-b)tanB=3ac,则角B的值为
3.下列判断中