专题:等比数列求和教案
-
《等比数列求和》教案
等比数列的前n项和(第一课时教案) 一、教材分析 1.从在教材中的地位与作用来看 《等比数列的前n项和》是数列这一章中的一个重要内容,从教材的编写顺序上来看,等比数列的前n项和
-
等比数列求和教案
《等比数列的前n项和》教学设计 教材:人教版必修五§2.5.1 教学目标:(1)知识目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题
-
山东省等比数列求和教案
等比数列的前n项和 1.知识与技能目标: 1)掌握等比数列求和公式,并能用之解决简单的问题。 2)通过对公式的推导,对学生渗透分类讨论思想以。 2过程与方法目标: 通过对公式的推
-
等比数列求和作业5篇范文
2.5《等比数列前n项和》(第二课时)作业
1、 在等比数列中,a1a2a36,a2a3a43, 则a3a4a5a6a7 A. 11
8B.1916C.98D.34
2、在等比数列an中,a15,S555,则公比q等于
A.4B. 2C.2D.2或4
3、 -
等比数列求和教学设计
等比数列的前n项和 甘天威 一:教学背景 1.面向学生: 中学 学科: 数学 2.课时: 2个课时 3.学生课前准备: (1)预习书本内容 (2)收集等比数列求和相关实际问题。 二:教学课题 教养方面: 1
-
等比数列教案
等比数列(复习课)学案一.基本要求: ① 理解等比数列的概念;② 掌握等比数列的通项公式与前n项和公式及应用③ 了解等比数列与指数函数的关系发展要求:①掌握等比数列的典型性质及
-
等比数列教案
2.4 等比数列(一) (一)教学目标 1.知识与技能:理解等比数列的概念,掌握等比数列的通项公式,理解这种数列的模型应用。 2.过程与方法:通过丰富实例抽象出等比数列模型,经历由发现几个
-
等比数列教案
等比数列教案(第一课时) 彭水第一中学校贺巧 教材分析: 三维目标:知识与技能:1.理解等比数列的定义;2.掌握等比数列的通项公式,会解决知道an,a1,q,n中的三个,求另一个的问题. 过程与方法
-
等差数列、等比数列的证明及数列求和5篇
等差数列、等比数列的证明1.已知数列an满足a11,an3an12n3n2, (Ⅰ)求证:数列ann是等比数列;(Ⅱ)求数列an的通项公式。2.已知数列an满足a15,an12an3nnN*, (Ⅰ)求证:数列an3n是等比数列;(Ⅱ)求数
-
等比数列第一节教案
课题: §2.4等比数列 授课类型:新授课 (第1课时) ●教学目标 知识与技能:掌握等比数列的定义;理解等比数列的通项公式及推导; 过程与方法:通过实例,理解等比数列的概念;探索并掌握等
-
无穷递缩等比数列求和教学案例及反思
无穷递缩等比数列求和教学案例及反思 如“无穷递缩等比数列求和”是在学生学习了数列及数列极限等知识的基础上提出来的,它与数列、方程、函数和极限等知识有内在的联系,能
-
数列求和教案
数列求和 数列求和常见的几种方法: (1) 公式法:①等差(比)数列的前n项和公式; 1n(n1) 21222n2nn( 123......6② 自然数的乘方和公式:123......n(2) 拆项重组:适用于数列1n)(2 1)an的通
-
数列求和教案
课题:数列求和 教学目标 (一) 知识与技能目标 数列求和方法. (二) 过程与能力目标 数列求和方法及其获取思路. 教学重点:数列求和方法及其获取思路. 教学难点:数列求和方法及其获取思
-
等差数列求和教案
一、教学目标: 等差数列求和教案 知识与能力:通理解等差数列的前 项和定义,理解倒序相加的原理,记忆两种等差数列求和公式。 过程和方法:让学生学会自主学习和合作学习,体会特
-
等差数列求和教案
课题:等比数列前 项和的公式 教学目标 (1)通过教学使学生掌握等比数列前 项和公式的推导过程,并能初步运用这一方法求一些数列的前 项和. (2)通过公式的推导过程,培养学生猜想、分
-
等差数列求和教案
等差数列求和 教学目标 1.通过教学使学生理解等差数列的前 项和公式的推导过程,并能用公式解决简单的问题. 2.通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特
-
等比数列第一课时教案
2.4等比数列
学习目标:
1、理解等比数列的定义,会用定义判断等比数列. 2、掌握等比数列的通项公式.
3、掌握等比中项的定义并能解决相应的问题. 教学重点、难点
重点:等比数列 -
等比数列的概念教案
《等比数列的概念》教案无锡市第三高级中学钱燕芳【教学目标】知识目标:正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等