专题:高二数学空间立体几何
-
2018高二数学立体几何学习方法
2018高二数学立体几何学习方法 数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。查字典数学网为大家推荐了高二数学立体几何学习方法,请大家仔细阅读,
-
高二数学立体几何基本知识及定理
1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类
-
高二数学立体几何解题技巧(五篇模版)
在做难题的时候,要注意方法。其实数学也是有方法可找的。就比如说解析几何,椭圆这类型的题,是联立还是点差法,下面给大家分享一些关于高二数学立体几何解题技巧,希望对大家有所帮
-
苏教版高二数学立体几何八大定理
高二数学期末复习——立体几何八个定理1. 直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.l ml//l//m 2. 直线与平面平
-
高二数学 立体几何的概念、公理、定理
立体几何的概念、公理、定理王 春 老师 编辑 2007-12 -20一.写出以下公理、定理,并根据图形写出它们的条件与结论。(一)立体几何三公理公理1:如果一条直线上的两点在一个平面内,那
-
四川省米易中学校高二数学立体几何空间几何体的直观图教案2五篇范文
四川省米易中学校高二数学立体几何(教案)空间几何体的直观图 教学目标: (1)掌握斜二测画法画水平设置的平面图形的直观图。 (2)采用对比的方法了解在平行投影下画空间图形与在中心
-
数学-立体几何[合集5篇]
立体几何1、空间的直线与平面⒈平面的基本性质(1)三个公理及公理三的三个推论和它们的用途;⑵斜二测画法. ⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.(1)公理四(平行线
-
2018届二轮数学 空间向量与立体几何 专题 专题卷(全国通用)(范文大全)
空间向量与立体几何 一、选择题 1. 已知A∈α,P∉α,=,平面α的一个法向量n=,则直线PA与平面α所成的角为 ( ) A. 30°B. 45°C. 60°D. 150° 【答案】C 【解析】设PA与平面α所
-
高二数学学好立体几何的方法(共5篇)
数学上,立体几何(Solid geometry)是3维欧氏空间的几何的传统名称—-因为实际上这大致上就是我们生活的空间。一般作为平面几何的后续课程。下面小编给大家分享一些高二数学学
-
《立体几何VS空间向量》教学反思
我这节公开课的题目是《立体几何VS空间向量》选题背景是必修2学过立体几何而选修21又学到空间向量在立体几何中的应用。学生有先入为主的观念,总想用旧方法却解体忽视新方法
-
空间向量方法解立体几何教案
空间向量方法解立体几何【空间向量基本定理】例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分数x、y、z的值。 成定比2,N分PD成定比1,求满足的
-
用空间向量处理立体几何的问题
【专题】用空间向量处理立体几何的问题一、用向量处理角的问题例1在直三棱柱ABOA1B1O1中,OO14,OA4,OB3,AOB90,P是侧棱BB1上的一点,D为A1B1的中点,若OPBD,求OP与底面AOB所成角的正切
-
空间立体几何初步单元测试_教学设计_教案
教学准备 1. 教学目标 立体几何初步 (1)空间几何体 ①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ②能画出简单空间图形
-
空间向量在立体几何中的应用
【利用空间向量证明平行、垂直问题】例. 如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。(1)证明:PA//平面EDB;(2)证明:PB⊥平面EFD;(3)求二
-
湘教版高二数学空间直角坐标系教学计划:上册
湘教版高二数学空间直角坐标系教学计划:上册 尽快地掌握学习知识迅速提高学习能力,由查字典数学网为您提供的湘教版高二数学空间直角坐标系教学计划,希望给您带来启发! ※教学
-
高二数学3.2立体几何中的向量方法,第2课时,利用空间向量证明平行、垂直关系
立体几何中的向量方法(2)2、利用空间向量证明平行、垂直关系基础性练习:1、在空间四边形ABCD中,E、F分别是AB、BC的中点,则AC与平面DEF的位置关系是A、平行B、相交C、在平面内D、
-
职高数学立体几何教学随笔
职高数学立体几何教学随笔
立体几何中直线和平面的这些内容,是立体几何的基础,也是学好这块知识的关键。学好立体几何,不仅要有丰富的空间想象能力,也要有严密的逻辑论证能力。 -
高三数学总复习立体几何复习
高三数学总复习立体几何复习一、基本知识回顾 重要的几何位置关系;平行与垂直。主要包括线线、线面、面面三种情况。证明的基本思路:一般情况下,利用判定定理。而构造满