专题:高考导数方法
-
2014高考导数
2014高考导数汇编
bex1
(全国新课标I卷,21)设函数f(x)aelnx,曲线yf(x)在点(1,f)处的xx
切线方程为ye(x1)2
(I)求a,b;
(II)证明:f(x)1
(全国新课标II卷,21)已知函数f(x)exex2x
(I)讨论f(x -
高考数学导数题
已知函数f(x)=x^2+2x+alnx
(1)若函数f(x)在区间【0,1】上恒为单调函数,求a范围
(2)当t≥1时不等式f(2t-1)≥2f(t)-3恒成立,求a的范围(1) f'(x)=2x+2+a/x=(2x^2+2x+a)/x
因为x>0,所以f'(x)的 -
高考导数练习三
bex1
1.(2014年北京理科)设函数f(x0aelnx,曲线yf(x)在点(1,f处的xx
切线为ye(x1)2. (Ⅰ)求a,b; (Ⅱ)证明:f(x)1.2.(2010全国文)(本小题满分12分)
已知函数f(x)=3ax4-2(3a+2)x2+4x.
(Ⅰ -
科学求导数的方法
导数是函数学习的最重要的部分,也是求概率论与数理统计的基本要求,那么如何科学求导数呢?下面看下我总结的部分:
求导数的方法
(1)求函数y=f(x)在x0处导数的步骤:
① 求函数的增量 -
导数证明不等式的几个方法
导数证明不等式的几个方法 1、直接利用题目所给函数证明(高考大题一般没有这么直接) 已知函数f(x)ln(x1)x,求证:当x1时,恒有 11ln(x1)x x1 如果f(a)是函数f(x)在区间上的最大(小)值
-
导数各类题型方法总结(学生版)大全
导数各种题型方法总结首先,关于二次函数的不等式恒成立的主要解法:1、分离变量;2变更主元;3根分布;4判别式法5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系(2)端点处
-
求偏导数的方法小结
求偏导数的方法小结 (应化2,闻庚辰,学号:130911225) 一, 一般函数: 计算多元函数的偏导数时, 由于变元多, 往往计算量较大. 在求某一点的偏导数时 , 一般的计算方法是, 先求出偏 导函数,
-
利用导数证明不等式的四种常用方法
利用导数证明不等式的四种常用方法 杨玉新 (绍兴文理学院 数学系, 浙江 绍兴 312000) 摘要: 通过举例阐述了用导数证明不等式的四种方法,由此说明了导数在不等式证明中的重
-
2014高考数学考前20天冲刺 导数及应用
2014高考数学考前20天冲刺
导数及应用
1.若函数f(x)=x3-6bx+3b在(0,1)内有极小值,则实数b的取值范围是
A.(0,1)B.(-∞,1)
C.(0,+∞)1D.0, 2
解析:选D.∵f(x)=x3-6bx+3b,
∴f′(x)=3x2-6b,
令f′(x -
高考数学专题-导数压轴题特辑1
导数压轴题特辑1一.选择题(共3小题)1.设f'(x)是函数f(x)的导函数,若f'(x)>0,且∀x1,x2∈R(x1≠x2),f(x1)+f(x2)<2f,则下列各项中不一定正确的是( )A.f(2)<f(e)<f(π)B.f′(π)<f′(e)<f′(2)C.f(2)<f′(2)﹣f′(3)<f(3)D.f′(3)<f(3)﹣f(2)<f′(2
-
高考数学导数专题讲义二:恒成立
导数中恒成立存在问题+零点问题探究1已知函数,其中ÎR.若对任意的x1,x2Î[-1,1],都有,求实数的取值范围;探究2已知函数的图象在点A(1,f(1))处的切线与直线平行。记函数恒成立,求c的取值范
-
高考备考方法
高三备考策略如果你是高三学生,只有2-----8个月时间就要参加高考,以下几点备考策略,供你参考,祝你考出理想成绩!考上理想大学!
1. 语文:上课认真听讲,做完老师布置的作业。
2. 英语: -
导数证明题
题目:已知x>1,证明x>ln(1+x)。
题型:
分值:
难度:
考点:
解题思路:令f(x)=x-ln(1+x)(x>1),根据它的导数的符号可得函数f(x)在
1)=1-ln2>0,从(1,+ )上的单调性,再根据函数的单调性得到函数f -
导数总结归纳大全
志不立,天下无可成之事!
类型二:求单调区间、极值、最值
例三、设x3是函数f(x)(xaxb)e
(1) 求a与b的关系式(用a表示b)
(2) 求f(x)的单调区间
(3) 设a0,求f(x)在区间0,4上的值域23x的一个 -
高考数学导数压轴题7大题型总结
高考数学导数压轴题7大题型总结 目前虽然全国高考使用试卷有所差异,但高考压轴题目题型基本都是一致的,几乎没有差异,如果有差异只能是难度上的差异,高考导数压轴题考察的是一
-
高考数学专题:导数的综合运用高考题答案
导数的综合运用高考题26.【解析】(1)的定义域为,.(i)若,则,当且仅当,时,所以在单调递减.(ii)若,令得,或.当时,;当时,.所以在,单调递减,在单调递增.(2)由(1)知,存在两个极值点当且仅当.由于的两个极值
-
高考志愿填报方法
河南省招办10招教你填报志愿 三种志愿模式要理清 今年,我省志愿模式共有三种。 第一种,是完全“平行志愿”,如本科一批、本科二批、专升本及对口招生院校。 第二种,是“顺序志
-
高考政治生活答题方法
一、经济生活的行为主体
国家、企业、个人(消费者、劳动者、投资者、纳税人)
二、经济生活一般性的答案要点
(一)有关“为什么”、“依据”、“原因”的答案一般有
1、价值规律