专题:高考数列题型专题
-
高考数列题型总结(优秀范文五篇)
数列 1. 2. 3. 4. 5. 6. 坐标系与参数方程 1. 2. 3 4. . 5. 6.
-
数列典型题型
数列典型题型
1、已知数列an中,Sn是其前n项和,并且Sn14an2(n1,2,),a11,
⑴设数列bnan12an(n1,2,),求证:数列bn是等比数列; a,(n1,2,),求证:数列cn是等差数列; ⑵设数列cnn
2n
⑶求数 -
数列求和经典题型分析
数列求和的常用方法数列求和是数列的重要内容之一,也是高考数学的重点考查对象。数列求和的基本思路是,抓通项,找规律,套方法。下面介绍数列求和的几种常用方法:一、直接(或转化)由
-
数列综合题型总结
数列求和
1.(分组求和)
(x-2)+(x2-2)+…+(xn-2)
2.(裂相求和)
111 1447(3n2)(3n1)
3.(错位相减)
135232222n12n
12222323n2n
4.(倒写相加)
1219984x
)f()f() x 求值设f(x),求f(1999199 -
数列高考复习
2012届知识梳理—数列1a(n2k)112n(kN*),记bna2n1,1、(河西三模)设数列{an}的首项a1,且an124a1(n2k1)n4n1,2,3,(I)求a2,a3;(II)判断数列{bn}是否为等比数列,并证明你的结论;(III)证明b13b25
-
高考数列专题练习(汇总)
数列综合题1.已知等差数列满足:,,的前n项和为.(Ⅰ)求及;(Ⅱ)令bn=,求数列的前n项和。2.已知递增的等比数列满足是的等差中项。(Ⅰ)求数列的通项公式;(Ⅱ)若是数列的前项和,求3.等比数列为递增
-
新课程高中数学数列题型总结
高中数学数列复习题型总结1.等差等比数列 (n1)S12.Sn与an的关系:an ,已知Sn求an,应分n1时a1n2SnSn1(n1)时,an=两步,最后考虑a1是否满足后面的an.基础题型题型一:求值类的计算题(多关
-
数列题型及解题方法归纳总结
文德教育 知识框架 列数列的分类数数列的通项公式函数的概念角度理解数列的递推关系等差数列的定义anan1d(n2)等差数列的通项公式ana1(n1)d等差数列n等差数列的求和公式Sn2(
-
高考数学复习之数列的题型及解题方法(本站推荐)
高考数学复习之数列的题型及解题方法数列问题的题型与方法数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗
-
2012年数学高考题型突破精讲专题六一数列
2012年数学高考题型突破精讲专题六一数列【命题特点】数列是高考考查的重点和热点,分析2010年高考试题,从分值来看,数列部分约占总分的10%左右。等差数列、等比数列的通项公式
-
高考数学 题型全归纳 数列要点讲解(优秀范文5篇)
数 列 一、高考要求 理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n项和的公
-
高考数学数列专题训练
高考限时训练----数列(45分钟)
一、选择题
1.已知等比数列{a2
n}的公比为正数,且a3·a9=2a5,a2=1,则a1= A. 12B. 22C. 2D.2
2.等差数列a2
n的前n项和为Sn,已知am1am1am0,S2m138,则m -
高考数列试题及答案
数列试题1.已知等比数列{an}的公比为正数,且a3·a9=2a5,a2=1,则a1= () A.2.已知为等差数列,B。1C. 3D.7 ,则等于() 212B.。C. 222D.2A. -13.公差不为零的等差数列{an}的前n项和为Sn.若a4
-
高考数列核心知识
广东高考数列必备知识
广东高考涉及数列的题目通常是一“小”一“大”。
1.小题属于中、低档题,主要考查等差(比)的概念、公式以及性质,复习重点应放在“基本量法”(也俗称“知三 -
2013高考试题分类—数列
2013年高考试题分类汇编——数列2013辽宁(4)下面是关于公差d0的等差数列an的四个命题:p1:数列an是递增数列;ap2:数列nn 是递增数列;ap4:数列an3nd是递增数列; p3:数列n是递增数列;n
-
2013高考试题——数列大题
2013年高考试题分类汇编——数列x2x3xn2013安徽(20)(13分)设函数fn(x)1x22...2(xR,nN),证明:23n2对每个n∈N+,存在唯一的xn[,1],满足fn(xn)0;3对于任意p∈N+,由中x
-
2013高考试题分类——数列[合集]
(2013上海卷)23.(3 分+6分+9分)给定常数c0,定义函数,数列a1,a2,a3,满足an1f(an),nN* f(x)2|xc4|x|c(1)若a1c2,求a2及a3;(2)求证:对任意nN,an1anc,;(3)是否存在a1,使得a1,a2,an,成等差数列?若存在
-
高考数学专题-数列求和
复习课:数列求和一、【知识梳理】1.等差、等比数列的求和公式,公比含字母时一定要讨论.2.错位相减法求和:如:已知成等差,成等比,求.3.分组求和:把数列的每一项分成若干项,使其转化为等差