专题:高中立体几何解题技巧
-
立体几何解题技巧
立体几何解题技巧
李明健 发布时间: 2010-8-4 16:07:19
立体几何解答题的设计,注意了求解方法既可用向量方法处理,又可以用传统的几何方法解决,并且一般来说,向量方法比用传统方 -
高中立体几何
高中立体几何的学习高中立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。立体几何是中学数学的一个难点,学生普遍反映“几何比代数难
-
高二数学立体几何解题技巧(五篇模版)
在做难题的时候,要注意方法。其实数学也是有方法可找的。就比如说解析几何,椭圆这类型的题,是联立还是点差法,下面给大家分享一些关于高二数学立体几何解题技巧,希望对大家有所帮
-
高一数学立体几何解题技巧口诀(精选5篇)
高一数学解题技巧口诀
《立体几何》点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。
方 -
高中立体几何常用结论、定理
立体几何中的定理、公理和常用结论 一、定理 1.公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 若A∈l,B∈l,A∈,B∈,则l⊂. 2.公理2如果两个平面有
-
高中立体几何证明方法
高中立体几何一、平行与垂直关系的论证由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定
-
高中立体几何初步小结(定稿)
立体几何证明初步总结 ①、三个公理和三个推论: 这是判断几点共线(证这几点是两个平面的公共点)和三条直线共点(证其中两条直线的交点在第三条直线上)的方法之一。 ②、证明线线
-
高中立体几何教案5篇
高中立体几何教案 第一章 直线和平面 两个平面平行的性质教案 教学目标 1.使学生掌握两个平面平行的性质定理及应用; 2.引导学生自己探索与研究两个平面平行的性质定理,培养和发
-
浅谈高中立体几何的学习方法
浅谈高中立体几何的学习方法高三数学组邓雪芹升入高中后,面对新的课程,新的知识,新的学习方法很多学生多会感到无所适从,尤其是在高中立体几何方面颇感头疼。中学阶段我们接触的
-
高中仿句解题技巧
高中仿句解题技巧 [考点透视] 仿句,就是根据试题设置的语言环境和提供的例句句式特点,在充分了解语意、感受语脉、品味语境的基础上,仿写一个或几个内容相同、句式一致的句子
-
高中立体几何基础知识点全集(图文并茂).
立体几何知识点整理 姓名: 一.直线和平面的三种位置关系: 1. 线面平行 l 符号表示: 2. 线面相交 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1. 线线平行: 方法一:用
-
高中立体几何基础知识点全集(图文并茂)
立体几何知识点整理姓名:一.直线和平面的三种位置关系: 1. 线面平行l符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系: 1. 线线平行:方法一:用线面平行实现。l//ll//m
-
高中立体几何证明垂直的专题训练
高中立体几何证明垂直的专题训练深圳龙岗区东升学校—— 罗虎胜立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”
-
高中立体几何证明平行的专题训练
1. 如图,四棱锥P-ABCD的底面是平行四边形,点E、F分别为棱AB、 PD的中点.求证:AF∥平面PCE;2、如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+3,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的
-
高中立体几何证明平行的专题(五篇范文)
高中立体几何证明平行的专题(基本方法)一、利用三角形及一边的平行线a.利用中位线b.利用对应线段成比例(a)、利用中位线例1、如图,ABCD是正方形,O是正方形的中心,E是PC的中点。
-
高中立体几何证明平行的专题训练)
高中立体几何证明平行的专题训练深圳市龙岗区东升学校——罗虎胜立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1) 通过“平移”
-
解题技巧
记叙文阅读: 1. 概括(?人做了?事,结果?) 2. “这”“那”指代的内容(答案就在附近) 3. 用原文回答时,更改代词 4. 赏析:角度、修辞 句式(长短句结合、对偶句) 用得生动形象的动词、形容词
-
解题技巧
她,一双水灵灵的大眼睛镶嵌在远远的脸蛋上,闪着稚气的光,那薄薄的嘴唇一动一动像吃樱桃。头上还属这两条羊角辫,最有趣的是她的鼻子,竟是扁扁的,好像怎么也立不起来似的。他就是