专题:高中数学竞赛平面几何
-
高中数学竞赛中平面几何涉及的定理
1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于
-
高中数学常用平面几何名定理
高中数学常用平面几何名定理定理1 Ptolemy定理托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。定理2 Ceva定理定理3 Menelaus
-
高中数学联赛平面几何定理(五篇模版)
①鸡爪定理:设△ABC的内心为I,∠A内的旁心为J,AI的延长线交三角形外接圆于K,则KI=KJ=KB=KC。 由内心和旁心的定义可知∠IBC=∠ABC/2,∠JBC=(180°-∠ABC)/2 ∴∠IBC+∠JBC=∠ABC/
-
高中竞赛专题:平面几何证明
竞赛专题-平面几何证明[竞赛知识点拨]1. 线段或角相等的证明(1)利用全等△或相似多边形(2)利用等腰△3)利用平行四边形(4)利用等量代换(5)利用平行线的性质或利用比例关系(6)利用圆中的等
-
高中数学竞赛的教案:平面几何 第八讲 圆幂定理(模版)
数学竞赛辅导讲稿—平面几何 第八讲 圆幂定理 一、知识要点: 1、 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。 即:如图,PA·PC=PB·PD ACOBPD 2、 切割线定理
-
高中数学竞赛大纲
高中数学竞赛大纲(修订讨论稿)中国数学会普及工作委员会制定(2006年8月)从1981年中国数学会普及工作委员会举办全国高中数学联赛以来,在“普及的基础上不断提高”的方针指导下,全
-
高中数学竞赛大纲范文
高中数学竞赛大纲(修订讨论稿)
中国数学会普及工作委员会制定
(2006年8月)
从1981年中国数学会普及工作委员会举办全国高中数学联赛以业,在“普及的基础上不断提高”的方针指导下 -
高中数学竞赛校本课程(合集)
高中数学竞赛校本课程 一、课程目标 数学是研究空间形式和数量关系的学科,也是研究模式与秩序的一门学科。数学本身的特点决定了它作为科学基础的地位,中学数学的内容与其中蕴
-
高中数学培优材料1:平面几何(梅涅劳斯定理)
国光中学数学培优系列讲座——竞赛二试系列讲座高中数学培优讲座第一讲:平面几何——梅涅劳斯定理、塞瓦定理在中国数学奥林匹克(CMO)的六道试题中,以及国际数学奥林匹克(IMO)的
-
高中数学联赛平面几何重点——梅涅劳斯定理
梅涅劳斯定理梅涅劳斯定理证明梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长 线交于F、D、E
-
新高中数学竞赛培训教案
预备↓↓ 初中知识衔接平面几何基础 函数基础 整式分式整理基础 暴力计算能力 观察能力类比归纳能力 举一反三能力数形结合能力 图形的直观认识一笔画水平数列猜想分析能力
-
2021全国高中数学竞赛专题-三角函数
全国高中数学竞赛专题-三角函数三角恒等式与三角不等式一、基础知识定义1角:一条射线绕着它的端点旋转得到的图形叫做角。角的大小是任意的。若旋转方向为逆时针方向,则角为正
-
高中数学竞赛讲义-抽屉原理
数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://www.xiexiebang.com 抽屉原理 在数学问题中有一类与“存在性”有关的问题,例如:“13个人
-
高中平面几何定理
(高中)平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两
-
平面几何练习题 初一
1.在△ABC中,∠C-∠B=90°,AE是∠BAC的平分线,求∠AEC的度数。
2.试说明:∠A+∠B+∠C+∠D+∠E+∠F=360°
问题补充:3.已知:三角形ABC中,BC=2AB,角B=2角C,AD是BC边上的中线。求证三角形ABD -
平面几何证明习题专题
平面几何证明习题1. 如图5所示,圆O的直径AB6,C为圆周上一点,BC3, 过C作圆的切线l,过A作l的垂线AD,垂足为D, 则DAC,线段AE的长为l线段CD的长为,线段AD的长为图5PA2.PB1,AC是圆O的直径,PC
-
2011高考平面几何证明
2011高考平面几何证明试题选讲1(2011安徽)如图4,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为AD,BC上点,且EF=3,EF∥AB,则梯形ABCD与梯形EFCD的面积比为2 (2011北京)如图,AD,AE,BC分别与圆O切
-
初中平面几何证明题
九年级数学练习题1.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG求证:S△ABCS△AEG2.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG。若O为EG的