专题:解三角形基本复习教案
-
不等式 向量解三角形复习(推荐5篇)
一、不等式的解法:1.一元一次不等式:Ⅰ、axb(a0):⑴若a0,则;⑵若a0,则;Ⅱ、axb(a0):⑴若a0,则;⑵若a0,则;2.一元二次不等式:a0时的解集与有关(数形结合:二次函数、方程、不等式联系) 3. 高
-
老师教案12 解三角形
教案12:解三角形(2) 一、课前检测 1. 在ABC中,根据下列条件解三角形,其中有两个解的是 A.b10,A45,C70B.a60,c48,B60C.a7,b5,A80D.a14,b16,A452.在△ABC中,已知B30,b503,c150,那么这个三角形一定是
-
解三角形应用举例教案(推荐)
解三角形应用举例教案 ●教学目标 知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语 过程与方法:首先通过巧妙的设
-
第一章 解三角形
第一章 解三角形章节总体设计(一)课标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习
-
解三角形公式[大全]
1、正弦定理:在C中,a、b、c分别为角、、C的对边,R为C
的外接圆的半径,则有
2、正弦定理的变形公式:①
② sinA=sinB=sinC=
③ a:b:c=
④ a -
解三角形(大全5篇)
第七章解三角形一、基础知识在本章中约定用A,B,C分别表示△ABC的三个内角,a, b, c分别表示它们所对的各边长,pabc2为半周长。absinB12csinC1.正弦定理:sinA=2R(R为△ABC外接圆半径)
-
高中数学复习专题:解三角形的综合应用
§4.7 解三角形的综合应用最新考纲考情考向分析能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.以利用正弦定理、余弦定理测量距离、高度
-
高中解三角形复习课教学记录
高一解三角形复习课教学过程
学生在学校已经上完,自我感觉还可以,但是面对题目,一提醒就会做,不提醒略复杂的题目就卡壳。教学过程:
1、 视觉心算训练
2、 指令:在脑海里画一个三 -
相似三角形复习教案
相似三角形复习教案 教学目标: 本课为相似三角形专题复习课,是对本章基本内容复习基础上的深化,通过对一个题目的演变,紧紧围绕一线三直角这个基本模型展开,由浅入深对相似三角
-
三角形专项复习教案.
三角形专项复习一、单元知识网络: 二、考试目标要求: 1.了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中 线和高,了解三角形的稳定性. 2.探
-
高中数学必修五解三角形教案
高中数学必修五解三角形教案高中数学必修五解三角形教案篇一:高中数学必修5解三角形知识总结及练习解三角形一、知识点: 1、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R为
-
2012届高考数学一轮复习教案:5.4 解斜三角形
5.4 解斜三角形 ●知识梳理 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即abc==. sinAsinBsinC利用正弦定理,可以解决以下两类有关三角形的问题. (1)已知两角和任一
-
2010高考数学总复习7 解三角形练习题[合集]
亿库教育网http://www.xiexiebang.com 2010高考数学总复习解三角形练习题一、选择题1. 在△ABC中,若C90,a6,B30,则cb等于A. 1 B. 1 C. 23 D. 23002. 若A为△ABC的内角,
-
解斜三角形简单练习
一、自主梳理1.正弦定理:abc===2R,其中R是三角形外接圆半径. sinAsinBsinC222222b2c2a22.余弦定理:a=b+c-2bccosA,b=a+c-2accosB,cosA=.2bc111absinC=bcsinA=acsinB,S△=S(Sa)(
-
解三角形教学反思
解三角形教学反思 解三角形教学反思1 掌握直角三角形的边角关系并能灵活运用;会运用解直角三角形的知识,利用已知的边和角,求未知的边和角;能结合仰角、俯角、坡度等知识,综合运
-
相似三角形复习课教案大全
《相似三角形》复习课教案 城区二中 章松岩 目的:使学生掌握相似三角形的判定和性质和应用,并能灵活运用。 重点:相似三角形的判定和性质和应用。 难点:相似三角形的灵活运用。
-
全等三角形单元复习教案
知识点一:全等三角形 1、全等三角形的定义能够完全重合的两个图形叫做_______。能够完全重合的两个三角形叫做全等三角形。 要点诠释: (1)把两个全等的三角形重合到一起,重合的顶
-
相似三角形复习教案[全文5篇]
设计意图: 1、通过学生对一道中考题的解答,让学生认识到有时利用相似三角形解决问题较简便。 2、以小题目的形式来回顾梳理相似三角形的基本图形,并重点得到“三垂直型”; 使学