专题:立体几何强化练习题
-
立体几何二面角求法练习题 1
立体几何二面角求法练习题 1、正方形ABCD-A1B1C1D1中二面角B-A1C-A的大小为____ 2、将∠A为60°的棱形ABCD沿对角线BD折叠使A、C的距离等于BD则二面
角A-BD-C的余弦 -
立体几何强化练习(2018年6月25)
立体几何强化练习(2018年6月25) 一.选择题(共2小题) 1.如图,某几何体的三视图中,俯视图是边长为2的正三角形,正视图和左视图分别为直角梯形和直角三角形,则该几何体的体积为 A. B. C. D.2.
-
预算员考试强化练习题
预算员考试强化练习题 判断题: 1、降水工程和打桩工程综合了工程水电费( )2、基础与墙体的划分界限为室外地坪。( ) 3、室外楼梯的建筑面积按其水平投影的1/2计算。( ) 4、建筑工
-
立体几何第六讲面面垂直练习题(含答案)
第六节面面关系(一)平行(二)垂直11.如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AA1,D是棱2AA1的中点(I)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比
-
立体几何垂直和平行的证明练习题(共5则)
1.下列命题正确的是………………………………………………A.三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两条相交直线确定一个平面2.若直线a不平
-
报关第二章第四节强化练习题
一、单选题 1、无论以何种方式进口列入《进出口野生动植物商品目录》属于我国自主规定管理的野生动植物及其产品,均须事先申领。 A、公约证明 B、非公约证明 C、物种证明
-
不等式题型强化综合练习题
一、解下列一元二次不等式:
1、x25x602、x25x603、x27x120
4、x27x605、x2x1206、x23x50
7、x2
2x308、6x2
x209、x2
3x50二、分式不等式解法练习
1、
x5x402、2x3x203、 x3 -
初级经济师《经济基础》强化练习题
一、单项选择题1.货币与信用存在的共同前提是。A.私有制B.社会分工C.大量剩余产品的出现D.商品经济的产生【正确答案】:A【答案解析】:货币与信用存在的共同前提是私有制。
-
立体几何2018高考
2018年06月11日青冈一中的高中数学组卷 一.选择题(共11小题) 1.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图
-
教案 立体几何
【教学过程】 *揭示课题 9 立体几何 *复习导入 一、点线面的位置关系 1 点与直线的位置关系:Aa Aa 2.点与面的位置关系: A A 3.直线与直线的位置关系:平行 相交 异面 4直线
-
高中立体几何
高中立体几何的学习高中立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。立体几何是中学数学的一个难点,学生普遍反映“几何比代数难
-
立体几何复习题
立 体 几 何 复习题二、垂直关系一、平行关系(1) 线线平行(2)线面平行(3)面面平行证明线线平行的常用方法: 证明线面平行的常用方法: 证明面面平行的常用方法: 练习:1、已知有公共边
-
立体几何复习资料
立体几何判定方法汇总
一、判定两线平行的方法
1、平行于同一直线的两条直线互相平行
2、 垂直于同一平面的两条直线互相平行
3、 如果一条直线和一个平面平行,经过这条直线 -
立体几何证明题[范文]
11. 如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=1,D是棱2AA1的中点(I)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.2. 如图5所示,在四棱锥PAB
-
立体几何测试题[本站推荐]
1、设l,m是两条不同的直线,是一个平面,则下列命题正确的是(B)
(A)若lm,m,则l(B)若l,l//m,则m
(C)若l//,m,则l//m(D)若l//,m//,则l//m
2、在空间,下列命题正确的是(D)
A.平行直线的平行投影重合B.平 -
立体几何复习(★)
一、线线平行的证明方法
1、利用平行四边形。2、利用三角形或梯形的中位线。
3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。 -
立体几何证明
立体几何证明高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):Ⅰ.平行关系:线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(
-
立体几何证明
1、(14分)如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点. (1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1.A2.如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱交B1C于点F,BB