专题:七种求法求函数解析式
-
函数解析式的七种求法
函 数 第二讲 解 析 式 的 求 法
一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设f(x)是一次函数,且f[f(x)]4x3,求f(x)二、 配凑法:已知复合函数f[g(x)]的表 -
函数解析式求法总结及练习题
函 数 解 析 式 的 七 种 求 法 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法. 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其
-
几种典型函数解析式的求法集合
函数的解析式的求法一. 换元法题1.已知f(3x+1)=4x+3, 求f(x)的解析式.练习1.若f(1x)x1x,求f(x).二.配变量法题2.已知f(x1x)x21x2, 求f(x)的解析式.练习2.若f(x1)x2x,求f(x).三.待定
-
求二次函数的解析式教案
用待定系数法求二次函数解析式 靖和中心学校 王军 一、教学目标 知识目标:通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法。 能力目标:能灵活的根据条件恰当地
-
二次函数的几种解析式及求法教学设计
二次函数的几种解析式及求法教学设计 福泉一中:齐庆方 一、指导思想与理论依据 (一)指导思想:本次课的教学设计以新课程标准关于数学教学的核心理念为基本遵循,坚持以教师为主导,
-
二次函数解析式求法的教学反思.doc.
二次函数解析式求法的教学反思
郭利强
求函数解析式是初中数学主要内容之一,求二次函数的解析式也是联系高中数学的重要纽带。求函数的解析式,应恰当地选用函数解析式的形式,选 -
求二次函数解析式的四种方法
新才教育--王慧敏--专题讲解(授课教师:解老师) 求二次函数解析式的四种基本方法 二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础。熟练地求出二次函数的解析式
-
顶点式法求二次函数解析式[最终版]
顶点式法求二次函数解析式 ①二次函数y=ax+bx+c(a,b,c 是常数,a≠0)用配方法可化成:y=a(x-h)+k,顶点是(h,k) 22b24acb2)+,2a4abbb4acb24acb2对称轴是x=,顶点坐标是(,), h=-,k=, 所以,
-
高一数学--求解析式
代入法
配凑发求解析式:换元法
消元法
待定系数法
(1) 代入法:
例1、①已知f(x)=x2-3x,求f(2x-1)
x②已知f(x)=2xx,g(x) =2x0xx0x0x0,求f(g (x))
③已知f(x)=2x2+1, g(x)=x-1, 求f(g -
北师大版高一数学必修1教案-函数解析式的求法
京翰高考网:http://gaokao.zgjhjy.com/
§2.23函数解析式的求法
教学目标:让学生了解函数解析式的求法。
重点:对f的了解,用多种方法来求函数的解析式
难点:待定系数法、配凑法、 -
浅谈函数极限的求法
浅谈函数极限的求法摘要:函数极限是数学分析的基本内容之一,也是解决其它问题的基础。如何求出已知函数的极限是学习微积分必须掌握的基本技能。本文系统地介绍了利用定义、两
-
函数极限的若干求法 20121109
高等数学中极限的分析与研究 【摘 要】极限是高等数学中一个很重要的基础知识点,是微积分的前提,因此函数极限的求解是非常重要的。本文针对高等数学中极限的求解方法进行了一
-
二次函数解析式专项练习(精选5篇)
二次函数解析式专项练习一般式:y=ax2+bx+c(a≠0) 顶点式:y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点坐标 两根式:y=a(x-x1)(x-x2)(a≠0),其中x1、x2是抛物线与x轴的两个交点的横
-
函数的解析式与定义域 教案
课题:函数的解析式及定义域 知识要点 1函数解析式:函数的解析式就是用数学运算符号和括号把数和表示数的字母连接而成的式子叫解析式,解析式亦称“解析表达式”或“表达式”,简
-
函数极限的求法(正文)(五篇材料)
目录 0.引言 .......................................................... 1 1.函数极限的定义 ................................................ 1 2. 一元函数极限的求
-
二次分式函数值域的求法
二次甘肃王新宏一定义域为R的二次分式函数用“判别式”法解题步骤:1把函数转化为关于x的二次方程2 方程有实根,△≥03 求的函数值域2x2x21:求y =2的值域 xx2解:∵x+x+2>0恒成立
-
高中函数值域的5种求法
高中函数值域的5种求法武汉前程教育(前程善学)是由原华师一附中高级教师联合创办的大型课外辅导培优机构,开设有小初高各年段一对一个性化辅导、精品小班,及各类小升初、初升高
-
一类二元函数最值的求法
龙源期刊网 http://.cn
一类二元函数最值的求法
作者:高海燕
来源:《数理化学习·高三版》2013年第05期
点评:解法1和解法2中都用了配方法,但由于配方的目的不同.