专题:专升本高数极限练习题
-
高数极限习题
第二章 导数与微分 典型例题分析 客观题 例 1 设f(x)在点x0可导,a,b为常数,则limf(x0ax)f(x0bx)xabx0 f(x0) Aabf(x0) B(ab)f(x0)C(ab)f(x0) D 答案 C 解 f(x0ax)f(x0
-
高数竞赛练习题答案(函数、极限、连续)
函数、极限、连续1. f(x),g(x)C[a,b],在(a,b)内二阶可导且存在相等的最大值,又f(a)g(a),f(b)g(b),证明:(a,b),使f()g()(a,b),使f()g() 证明:设f(x),g(x)分别在xc,xd处取得
-
高数极限求法总结
首先说下我的感觉, 假如高等数学是棵树木得话,那么 极限就是他的根, 函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎, 可见这一章的重要性。 为什么第一章如此重要? 各个章节
-
专升本高数考试大纲
高等数学复习大纲参考书: 高等数学(本科少学时类型)上下册同济大学应用数学系编高等教育出版社 要求: 一、函数与极限 考试内容:函数的概念基表示法、函数的有界性、单调性、周期
-
高数课件-函数极限和连续范文合集
一、函数极限和连续自测题 1,是非题 (1)无界变量不一定是无穷大量 (2)若limf(x)a,则f(x)在x0处必有定义 xx012x(3)极限lim2sinxlimx0 xx33x2,选择题 (1)当x0时,无穷小量1x1x是x的 A.
-
高数复习方案(函数和极限)
计算机科学与技术09级学生工作委员会—学习部函数与极限1. 集合:具有某种特性定性质的事物的总体成为集合组成集合的事物叫做元素设元素为a集合为M那么aM交集,子集,属于,不属于
-
2013年重庆专升本高数试题答案
2013年重庆普通专升本高等数学试题答案 一、CBADCB 3xcosxsinx2k;8、;9、;10、;11、;12、 a0[0,)13552x1e三、13、(1)(,2];(2),1;(3)(,0)(0,2](4)2;14、; 4211822 15、(ln21);16、1x(arcsinx)C
-
2010成人高考专升本高数试题及答案
贺新郎 1923 挥手从兹去。更那堪凄然相向,苦情重诉。眼角眉梢都似恨,热泪欲零还住。知误会前翻书语。过眼滔滔云共雾,算人间知己吾与汝。人有病,天知否? 今朝霜重东门路,照横塘半
-
高数极限习题及答案(精选多篇)
练习题 1. 极限 lim1xx3x32xlimx5x6x8x15x1x222x3limx1x12x1limx x10limaxbxx1 已知, 求常数a, b. xsin(6) 2limx0x1xlimxx21sinx(7) 12x2 (8) limxx012x(9
-
极限连续-高数竞赛超好
高数竞赛例题 第一讲 函数、极限、连续 例1. 例2. 例3. 例4. 例5. 例6. 例7. 例8. 例9. lim1nn(1n2nn). lim135(2n1)246(2n)n limx0x35x,其中[]为取整函数 lim1cosx
-
高数_第1章_极限计算方法总结
极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义: 数列极限、函数极限,课本42页的表格必须认真填写并掌握。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到
-
九江学院专升本高数真题
1.已知f(x1)x23x,则f(sinx)______. 1xsin,x02.已知f(x)在R上连续,则a_____. xax2,x03.极限lim(x1x2x)_________. x4.已知yln(x1x2),则y'_____. xy5.已知函数ze,则此函数在(2,1)处的全微
-
高数:总结求极限的常用方法5篇
总结求极限的常用方法,详细列举,至少4种 极限定义法 泰勒展开法。 洛必达法则。 等价无穷小和等价无穷大。 极限的求法 1. 直接代入法 适用于分子、分母的极限不同时为零或不
-
高数极限60题及解题思路[5篇范文]
高数极限60题 1.求数列极限lim(sinn1sinn)。 n2.设Snk,其中bk(k1)!,求limSn。 nbk1k2n1nn3.求数列极限lim(12q3qnq4.求数列极限lim[n),其中q1。 n24n5(n1)]。 111)(1)...(1)。
-
高数复习笔记之极限与函数
1,隐含的分段函数与建立函数关系
2,如何判断微积分的有界性
3,极限定义做了解,性质:唯一性、保号性、四则运算,若一个极限存在另一个不存在则相加减的极限必不存在、乘除的极限可 -
河南专升本高数总共分为十二个章节
河南专升本高数总共分为十二个章节,下面耶鲁小编把每个章节的考点为大家整理出来,希望大家都能在明年的河南专升本考试中取得一个满意的好成绩。 第一章、函数、极限和连续
-
高数8多元函数的极限与连续
二元函数的极限 二元极限存在常用夹逼准则证明 例1 lim(3x2y)14 x2y1211xsinysin,xy0,例2 函数f(x,y)在原点(0,0)的极限是0. yx xy0.0二元极限不存在常取路径 x2y例3 证明:函
-
高等数学函数极限练习题
设f(x)2x1x,求f(x)的定义域及值域。 设f(x)对一切实数x1,x2成立f(x1x2)f(x1)f(x2),且f(0)0,fa,求f(0)及f(n).(n为正整数) 定义函数I(x)表示不超过x的最大整数叫做x的取整函数,若