数学建模实验项目八狐狸与野兔问题[最终版]

时间:2019-05-12 12:26:20下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学建模实验项目八狐狸与野兔问题[最终版]》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学建模实验项目八狐狸与野兔问题[最终版]》。

第一篇:数学建模实验项目八狐狸与野兔问题[最终版]

数学建模实验项目八狐狸与野兔问题

一、实验目的:

1、认识微分方程的建模过程;

2、认识微分方程的数值解法。

二、实验要求:

1、熟练应用Matlab的符号求解工具箱求解常微分方程;

2、掌握机理分析建立微分方程的方法和步骤;

3、提高Matlab的编程应用技能。

三、实验内容及要求 dy(狐狸与野兔问题)在一个封闭的大草原里生长着狐狸和野兔,设t时刻它们的数量分别为y(t)和x(t),0.001xy0.9y已知满足以下微分方程组 dt

(1dx)建立上述微分方程的轨线方程; 4x0.02xy(dt(3)建立另一个微分方程来分析人们对野兔进行捕猎会产生什么后果?对狐狸进行捕猎又会产生什么后果?

四、实验步骤及过程

1.建立一个名为“0*级计算第08次作业*******”(********表示自己的学号)的文件夹。

2.打开Matlab软件,练习实验指定的内容。

3.将所得结果保存到文件夹中,并上存到天空教室。

莆田学院期末考试试卷

2011 ——2012 学年第 2学期

课程名称:数学建模适用年级/专业:09数学

试卷类别 开卷(√)闭卷()学历层次本科考试用时

答题正文要求:

(1)写清建模分析过程、建立的模型、模型求解及其结果、并对结果给予简单的分析;

(2)要求每人独立完成一份;

(3)试卷打印格式参照教务处有关规定执行;

(4)在下列二题中选做一题。

一、借贷问题

某地银行对个人住房25年贷款期限的贷款条件通常为:年利率为0.12,而且是月均等额还款。小叶夫妇要买房还缺6万元,正在考虑到银行去错6万元。

正在这时,小叶夫妇看到一个借贷公司的针对银行贷款条件的广告,说他们可以在年利率0.12的前提下,帮你提前三年还清借款,但是,(1)每半个月还一次款

(2)由于每半个月就要开一张收据,文书工作多了,要求顾客预付三个月的还款。

小叶夫妇很为这则广告吸引,因为提前三年可节省2万多元,而预付三个月的还款只不过1896元,多合算!但他们还是有点疑惑,难道这家借贷公司是个慈善机构,他们不想赚钱了?他们去请教他们的朋友,学金融数学的小金。小金说,我们一起来分析一下该借贷公司的两个“但是条例”分别能提前多少时间还清借款。请你们告诉我,这时已知的是什么,要求的是什么?小叶夫妇不太明白,但小金坚持他们必须弄明白,才能提高分析能力。在小金的耐心帮助下,小叶夫妇终于明白了。试问小叶夫妇明白了什么?

二、交通管理中亮黄灯的时间问题

在十字路口的交通管理中,亮红灯之前要亮一段时间黄灯,这是为了让那些行驶在十字路口或距十字路口太近以致无法停下来的车辆通过路口。那么,黄灯应该亮多长时间才能使这些车辆安全顺利地通过路口呢?

第二篇:数学建模与数学实验

通过多年来的教学改革与教学实践,教学效果显著,模块化分层次教学、换位式教学和启发式教学的方法得到了学生们的认可。这种方式大大提高了学生们的动手能力,并贯穿于平时的教学实践中,同时也反映出学生撰写科技论文的写作水平,为学生进一步参加数学建模竞赛奠定了良好的基础。该课程的成功经验在我校、市内以及西部地区起到很好的示范辐射作用,得到专家和学生的好评。

校外专家

(一)评价:

刘琼荪(全国数学建模竞赛重庆赛区组委会秘书长,重庆大学教授)

重庆邮电大学是我国最早开设数学建模系列课程的学校之一, 经过十多年的努力,该课程已经建设成为培养学生的创新和竞争能力的优秀课程。该课程在教学环节上充分体现出了教学研究型大学的特色,坚持培养学生“以竞赛为契机,以能力提升为宗旨”的指导思想,在教学内容和教学方式方面进行了大胆、慎重的改革, 把课堂教学、课后实践、在数学建模基地做数学实验、参加讨论班研讨、参加国内外数学建模竞赛结合起来,既激发了学生进一步学习数学的兴趣,又提高了学生的科学素质和能力,收到了很好的效果。该类课程自开设以来,已有逾万名学生学习本课程。全校每年有1000余名学生参加全国或校内竞赛,近三年参加全国大学生数模竞赛中, 获全国奖27项(规定每年一个学校最多10项), 成绩在重庆赛区参赛学校中名列前茅。另外,陈理荣教授等编著的教材《数学建模导论》(北京邮电大学出版社出版)也已为全国20余所大学用作数学建模课程的教材被广泛使用,杨春德教授等编著的《数学建模的认识与实践》也为本门课程的建设提供了素材。且《数学建模》已成为重庆市精品课程,“数学建模与数学实验”教学团队已获重庆市市级教学团队称号。

有鉴于此,我认为《数学建模与数学实验》已完全达到了重庆邮电大学重点课程的要求。

校外专家

(二)评价:

朱宁(全国大学生数学建模优秀指导教师,桂林电子科技大学教授)

全国大学生数学建模竞赛自90年代在我国开展以来,一直受到全国各高校的重视,把竞赛作为培养数学知识应用的一个平台。重庆邮电大学是较早参加这活动的高校,近几年,在竞赛中屡获佳绩,走在同类高校的前列,引起了广泛的重视。本人认为重庆邮电大学在数学建模赛成功的主要经验有如下几方面: 首先是有一支实力雄厚、敬业的师资队伍。《数学建模与数学实验》课程建设成员11名,其中有教授4人,副教授6人,4人具有博士学位,1人获全国大学生数学建模竞赛优秀指导教师称号。教学成果多,教学团队整体实力强,“数学建模与数学实验”教学团队已获重庆市市级教学团队称号。

其次《数学建模与数学实验》类课程形成了“三层次—两阶段”的教学和竞赛的课程改革方案,设计并探索了数学应用型人才培养理念,在教学模式和教学方法和评价方式等方面均有创新,形成了“教学-实践-竞赛” 的数学建模教学模式,形成了一套具有特色的加强数学模型思想的教学模式。

第三是注重校际间交流,吸取好的经验,完善教学过程。教师曾多次在国内外关于数学建模教学与应用会议上介绍经验,并先后在国内外核心期刊上发表论文数篇。每年参加赛区举办的数学实验课程和数学建模竞赛的教学经验交流会议。该课程建设已在西部地区起到了示范作用。

鉴于以上内容,个人认为《数学建模与数学实验》已达到了重庆邮电大学重点课程的要求。

校内同行评价

胡学刚(全国数学建模竞赛优秀指导教师,重庆邮电大学教务处副处长、教授)

《数学建模与数学实验》类课程先后为不同层次的学生开设了任选课、限选课和必修课。近年来,课程建设小组以《数学建模与数学实验》类课程为平台,以数学建模竞赛为契机,在工科数学类课程的教育教学改革中取得了突出成绩,主要表现在以下几个方面:

1.坚持数学建模类课程建设与工科数学教学改革相结合,数学建模类课程建设与数学建模竞赛相结合,理论教学与实验实践、课外活动相结合,将数学建模的思想融入到其它数学类课程的教学中,进一步深化工科数学类课程的教学改革。该课程建设特色鲜明,成效显著。

2.课题组老师热情指导学生开展数学建模活动,积极组织学生参加校内、国内及美国大学生数学建模竞赛。从最初的鼓励学生参赛,到现在同学们积极主动参赛;从最初的几个队参赛到现在的近百个队参赛,数学建模竞赛经历了一次次飞跃。经过多年的探索,课题组总结了一套成功的指导培训经验,使我校学生参加全国竞赛取得了优异成绩,近3年来,我校共有27个队获得国家级奖励,在重庆赛区位居前列,特别是2011年名列全国第二(公示中)。

3.师资队伍建设成效显著。近年来,课题组新增2位教师获得博士学位,1位教师博士即将毕业,教授由申报时的0人变为4人。队伍中现拥有全国模范教师、重庆市中青年骨干教师、重庆邮电大学优秀青年教师。他们多次在赛区组织的教练交流活动中介绍数学建模类课程程建设经验和竞赛经验,在重庆市乃至西部地区发挥了示范辐射作用。

4.课程建设成绩显著。在该门课程建设过程中,编著出版了《数学建模的认识与实践》一书,《数学建模》已成为重庆市精品课程,“数学建模与数学实验”已获重庆市市级教学团队称号,《数学建模理论与方法》于2011年成为重庆邮电大学立项建设教材。

有鉴于此,该课程是有较大影响的富有特色的课程,已具备了重庆邮电大学重点课程的条件。

学生评价

(一):

数学建模与数学实验这门课程是一门开放性和主动性的一门课程,它就是需要从现实生活、现实问题中抽象出数学模型,从而解决问题。这门课程融合了许多学科,对于学生来说,有机会广泛涉猎各种知识,这对于我们后续的发展是十分有好处的,因为目前在实际部门工作,也许不需要你对某一方面的有很深的知识,主要是遇到一个问题,能有解决的方法;再有就是对于继续深造的同学,也十分有益,因为通过广泛的知识储备,学生可以从中找到自己感兴趣的方向,继续深入的做下去,《数学建模与数学实验》这门课就为我们在这两方面打下了良好的基础。

同时,数学建模有利于培养学生的创造性思维能力,数学建模主要考查学生的数学思想方法,它是一种数学活动,而不单单像传统的数学练习题一样,做出来的答案是唯一的。相反,它可以有多种多样的答案,只要学生建立的模型是可行的,那它就是正确的。在学习这门课程的过程中,我也做过很多的实际题目,从那些过程中,我体会到的数学在实际生活中的应用,更重要的是培养了我们合作交流的方法、习惯,特别是促进学生的数学应用意识,提高了解决实际问题的能力。无论是数学研究还是数学学习,其目的之一就是将数学运用于社会,运用于现实,数学建模就重视培养学生的数学思维,加强数学应用意识,切实提高分析和解决实际问题的能力。

学习《数学建模与数学实验》是我大三的时候,朱伟老师将这门数学课讲得生动有趣,他没有介绍过于高深的理论,而是从实际应用出发。让我们对这门课程充满了兴趣,同时也对数学有了重新的认识,目前我正在进行硕士研究生阶段的学习,觉得那个时候学到的一些理论知识还有用,虽然那个时候没有过多的去深入研究那些知识,但现在当我遇到问题的时候,我知道有那样的一个理论存在,所以对于我来说就多了一些解决问题的方法。总之,在解决实际问题时,我们只有多了解一些方法,才能去掌握它,从而运用它,《数学建模与数学实验》就是一个连接理论与实际应用的桥梁。

(重庆邮电大学信息与计算科学专业,现西南财经大学统计学院硕士研究生 周黎)

校内学生(二)评价

大一的时候我就接触过数学建模,那是学校组织的数学建模竞赛,我们小组在比赛中获得了第三名,虽然是一个小小的第三名,当时还是给我很大的鼓舞,因为那时候大一能得奖好像只有两组,因此这学期一听说要开数模选修课,我就立马去报了名,抱着一点能学点东西的态度,认认真真的听完了前面大半的内容,后面由于很难坐倒好坐位,就只有自学了。

通过这门课的学习,我认识到了数模课多么的博大精深,虽然还是要靠一点小聪明,但主要还是要靠勤奋,因为数模涉及到太多的东西了,基本涉及到所有数学方面的知识,还有社会,科学等各方面的知识,要想能在这上面有所成就,只有靠平时的认真学习,打下牢实的基础。只有这样,才有可能在这上面有所发展。学习这门课,不管从学知识的角度,还是从学做学问的角度,对我而言,我都有很大的收获,衷心感谢各位数学组的老师在星期六不辞辛苦为我们上课。

(重庆邮电大学通信学院, 杨鹏)

校内学生(三)评价

从小到大,我对数学充满了爱好和兴趣,于是报名参加了数模学习辅导班。通过一个学期的数模学习,使自己学到了很多东西,不仅对数模的概念有了一定的了解,对数学建模的方法有了一定的掌握,同时也使自己加深了对数学知识的理解,能灵活运用数学解决一些实际吻题。数学建模是一种具有创造性的科学方法,它将现实问题简化,抽象为一个数学问题或者数学模型,然后采用恰当的数学方法求解,进而对现实问题进行定量分析和研究,最终达到解决实际问题的目的。随着计算机的运用和发展,数学建模成为高科技的一种“数学技术”,起着关键性的作用,作为计算机学员的一名学生,掌握新的技术和方法是必要的,是受益匪浅的。通过一个学期的学习,数模培养了我的洞察力,想象力,逻辑思维能力以及分析问题,解决问题的能力。在学习过程中,虽然碰到了很多的问题和困难,但是在老师的指点和教导下,使得很多问题都得到了解决,在这里要感谢辛勤教育我们的老师。虽然我没有去参加数模竞赛,但是我确实学到了很多东西,我相信这些我所学到的知识,对我的将来是有好处的。

(重庆邮电大学计算机学院:陈辉)

第三篇:精品课《数学建模与数学实验》学习体会

《数学建模与数学实验》网络培训心得体会

一直以来,我和我的同事们为我院的大学数学课程教学改革而思索。做了一些教学探索,收到了一些良好的效果,但也遇到了一些困难,如教师的能力亟待提高,恰逢全国高校教师数学建模与数学实验精品课程的网络培训这个平台给这么好的学习机会。

朱教授讲的如何培养学生的创造性,我和很多听课的同学都感到讲得很精彩,一种创造性是原创性成果、重大发明中所包含的创造性,这些创造我们确实很难做到;另一种创造性,不需要特别高深的理论和复杂的知识背景,大学生已经具备或只需要稍加补充即可,甚至道理浅显近乎常识;它解决问题的过程也比较短暂,无须漫长的积累,甚至立竿见影;但当大学生具备这些创造性后,对困难的问题就能势如破竹,迎刃而解。

朱教授的讲座中引用的例子由浅入深,很能说明问题,“载人宇宙飞船的研制和发射”、“优质杂交水稻品种的培育和推广”、“概率论中的中心极限定理的证明”、“哥德巴赫猜想的证明”等问题阐述了数学建模在现实意义。“万有引力定律”的推导过程、经济学中的“投入产出理论”、“统计上著名的正态分布总体的极大似然估计公式的推导”、“火箭上天”、“工件排序问题”等问题介绍了建模过程中如何复杂问题简单化的思想。

面对我院实际情况,将采取两方面的措施:

一、与实践紧密联系,课堂上增加一些生动形象的数学建模案例,是一种行之有效的途径,这不仅能让学生深刻地体会到什么叫做“学以致用”,而且还能激发学生的好奇心,引导他们主动发现生活中、学习中遇到的各种与数学相关的事情。把被动学习变成主动学习;

二、鼓励学生参加全国大学生数学建模竟赛,“以赛促教”、“以赛促学”,通过以学科竞赛带动创新型人才培养的模式,成立“数学建模”学生社团,指导教师就是我们基础部成立的数学建模小组里的全体老师,通过选修课、集中培训等方式帮助学生了解数学建模的基本知识,提高学生的学习兴趣。

总而言之,将数学建模引入课堂,根本是教师队伍的综合素质较高,我们要加强学习,还需长期经验积累。

第四篇:数学建模与数学实验教学大纲(工科)

数学建模与数学实验教学大纲(工科)总学分:3 总上课时数:48 或32

一、课程的性质与目的

本课程是面向理工科学生开设的一门选修课。本课程的教学目的是让学生增加一些用数学的感性认识,初步掌握一些基本的建模方法、建模原理和数学软件的应用。学生通过这门课的学习,在数学知识的综合运用,将实际问题转化为数学问题的能力方面、创新能力、自学能力方面、发散性思维能力方面都能得到一定培养。

二、适用专业

数学大类、工科各专业

三、课程内容的教学要求

(1)数学建模与数学实验概述:介绍数学建模与数学实验的基本概念,熟悉建模步骤。

(2)初等模型:掌握用初等函数对实际问题的变化关系作简单的定量分析;熟悉用图示法对实际问题作定性分析。

(3)量纲分析建模:掌握量纲分析原理,学会用量纲分析原理对一些物理问题作一些分析;了解数学中的无量纲化方法;掌握非线性方程求根的常用方法。

(4)代数学模型:介绍矩阵在解决实际问题中的应用,熟悉层次分析法的建模步骤,学会用矩阵思想分析实际问题;掌握线性方程组的数值揭解法和矩阵特征值与特征向量的近似求法。

(5)静态优化模型:了解微积分在解决实际问题中应用,掌握静态优化建模的基本步骤;熟悉微分、积分的数值方法。

(6)数值分析法建模:掌握曲线拟合、插值的基本方法,学会用插值、拟合作数据处理,了解插值、拟合建模的大致过程。

(7)常微分方程模型:熟悉微分方程建模的基本步骤,掌握线性微分方程建模基本方法,了解非线性微分方程模型的一些特殊性质;熟悉微分方程的数值解法。

(8)差分方程模型:了解差分法的基本思想,学会建立实际问题的离散模型,掌握递推、迭代法的求解过程。

(9)统计模型与实验 学习简单的随机模型的建模方法,熟悉Matlab工具箱的应用;

(10)优化模型:了解最优化思想,熟悉优化建模思路,能建立和求解一些简单的优化模型;会在适当的数学软件上实现优化模型。

四、上机要求

学会Matlab的基本操作、学会非线性方程求根,能在该软件平台上进行较大规模的数据处理及求解微分方程及优化问题。能更具体实际问题在软件上实现小规模编程运算。

五、能力培养

1.实际问题分析能力的培养:通过对实际问题的分析,抓住问题本质,才能建立满意的数学模型。

2.实际问题转化为数学问题能力的培养:要求学生通过本课程的学习,初步掌握将实际问题转化为数学问题的方法,能够建立简单的实际问题的数学模型。

3.自学能力、语言表达能力的培养:课程安排了大量自学内容,要求学生通过查阅文献,写论文等形式完成课后作业,使学生自学能力等得到培养。

4.创新能力的培养:课程里许多范例都是来源于实际问题,属于开放型的问题,学生可以充分展开自己的思维,开放式的学习,促使学生独立思考、深入钻研。

六、教材与参考书

1.陈恩水.《数学建模与实验》,自编讲义,2004.2.姜启源编.数学模型.北京,高等教育出版社,1992,第二版.3.郑家茂编.数学建模基础.南京,东南大学出版社,1997.4.朱道元编.数学建模精品案例.南京,东南大学出版社,1999.5.萧树铁主编.数学实验.北京, 高等教育出版社,1998.6.乐经良主编.数学实验.北京, 高等教育出版社,1999.

第五篇:数学建模实验小结

例1-1 >> r=2;V=4/3*pi*r^3 V =

33.5103 例2-1 计算s=...>> s=0;>> for n=1:100 s=s+1/n/n;end >> s s =

1.6350 例2-5 两个一元函数y=x3-x-1,y=x.2sin(5x)在区间-1

y=abs(x).^0.2.*sin(5*x);plot(x,y,':ro');hold off;

曲面图 >> xa=6:8;ya=1:4;>> [x,y]=meshgrid(xa,ya);>> z=x.^2+y.^2;>> mesh(x,y,z)>> [x,y,z] ans =

例2-6 二元函数图z=xexp(-x2-y2).xa=-2:0.2:2;ya=xa;

[x,y]=meshgrid(xa,ya);z=x.*exp(-x.^2-y.^2);mesh(x,y,z);pause;surf(x,y,z);pause;

contour(x,y,z,[0.1,0.1]);pause mesh(x,y,z);

Page40 1.先在编辑器窗口写下列M函数,保存为ex2_1.m function [xbar,s]=ex2_1(x)n=length(x);xbar=sum(x)/n;

s=sqrt((sum(x.^2)-n*xbar^2)/(n-1));

>> x=[81 70 65 51 76 66 90 87 61 77];>> [xbar,s]=ex2_1(x)xbar =

72.4000 s =

12.1124 2.s=log(1);n=0;while s<=100 n=n+1;

s=s+log(1+n);end

m=n 3.F(1)=1;F(2)=1;k=2;x=0;e=1e-8;a=(1+sqrt(5))/2;while abs(x-a)>e

k=k+1;F(k)=F(k-1)+F(k-2);x=F(k)/F(k-1);end

a,x,k m =

a =

1.6180 x =

1.6180 k = 4.clear;tic;s=0;for i=1:1000000 s=s+sqrt(3)/2^i;end

s,toc

tic;s=0;i=1;

while i<=1000000

s=s+sqrt(3)/2^i;i=i+1;

end

s,toc tic;s=0;

i=1:1000000;

s=sqrt(3)*sum(1./2.^i);s,toc

s =

1.7321 Elapsed time is 2.038973 seconds.s =

1.7321 Elapsed time is 2.948968 seconds.s =

1.7321 Elapsed time is 0.453414 seconds 5.t=0:24;

c=[15 14 14 14 14 15 16 18 20 22 23 25 28...31 32 31 29 27 25 24 22 20 18 17 16];plot(t,c)

6.(1)x=-2:0.1:2;y=x.^2.*sin(x.^2-x-2);plot(x,y)y=inline('x^2*sin(x^2-x-2)');fplot(y,[-2 2])

(2)t=linspace(0,2*pi,100);

x=2*cos(t);y=3*sin(t);plot(x,y)

(3)x=-3:0.1:3;y=x;

[x,y]=meshgrid(x,y);z=x.^2+y.^2;

surf(x,y,z)

(4)

x=-3:0.1:3;y=-3:0.1:13;[x,y]=meshgrid(x,y);

z=x.^4+3*x.^2+y.^2-2*x-2*y-2*x.^2.*y+6;surf(x,y,z)

(5)

t=0:0.01:2*pi;

x=sin(t);y=cos(t);z=cos(2*t);plot3(x,y,z)

7.x=linspace(0,pi,100);

y1=sin(x);y2=sin(x).*sin(10*x);y3=-sin(x);plot(x,y1,x,y2,x,y3)%page41, ex7 x=-1.5:0.05:1.5;

y=1.1*(x>1.1)+x.*(x<=1.1).*(x>=-1.1)-1.1*(x<-1.1);plot(x,y)

Page59 1.>> a=[1 2 3];b=[2 4 3];>> a./b ans =

0.5000

0.5000

1.0000 >> a.b ans = >> a/b ans =

0.6552 >> ab ans =

0

0

0

0

0

0

0.6667

1.3333

1.0000 2.(1)>> a=[4 1-1;3 2-6;1-5 3];b=[9;-2;1];>> ab ans =

2.3830

1.4894 2.0213(2)>> a=[4-3 3;3 2-6;1-5 3],b=[-1;-2;1] a =

-5 b =

>> ab ans =

-0.4706

-0.2941

0(3)>> a=[4 1;3 2;1-5],b=[1;1;1] a =

-5 b =

>> ab ans =

0.3311

-0.1219(4)>> a=[2 1-1 1;1 2 1-1;1 1 2 1],b=[1;2;3] a =

-1 b =

>> ab ans =

0

0 6.(1)>> a=[4 1-1;3 2-6;1-5 3];>> b=det(a),inv(a),[V,D]=eig(a)b =

-94 ans =

0.2553

-0.0213

0.0426

0.1596

-0.1383

-0.2234

0.1809

-0.2234

-0.0532 V =

0.0185

-0.9009

-0.3066

-0.7693

-0.1240

-0.7248

-0.6386

-0.4158

0.6170 D =

-3.0527

0

0

0

3.6760

0

0

0

8.3766(2)>> a=[1 1-1;0 2-1;-1 2 0];b=det(a),inv(a),[V,D]=eig(a)b =

ans =

2.0000

-2.0000

1.0000

1.0000

-1.0000

1.0000

2.0000

-3.0000

2.0000 V =

-0.5773

0.5774 + 0.0000i

0.57740.0000i

0.5773 + 0.0000i D =

1.0000

0

0

0

1.0000 + 0.0000i

0

0

0

1.00000.0000i

-0.5773

0.5774

0.5774

-0.5774

0.57730.0000i >> det(V)ans =

-5.0566e-028-5.1918e-017i

%V的行列式接近0, 特征向量线性相关,不可对角化(3)>> a=[5 7 6 5;7 10 8 7;6 8 10 9;5 7 9 10];[V,D]=eig(a)V =

0.8304

0.0933

0.3963

0.3803

-0.5016

-0.3017

0.6149

0.5286

-0.2086

0.7603

-0.2716

0.5520

0.1237

-0.5676

-0.6254

0.5209 D =

0.0102

0

0

0

0

0.8431

0

0

0

0

3.8581

0

0

0

0

30.2887 >> inv(V)*a*V ans =

0.0102

0.0000

-0.0000

0.0000

0.0000

0.8431

-0.0000

-0.0000

-0.0000

0.0000

3.8581

-0.0000

-0.0000

-0.0000

0

30.2887 8

对称阵A为正定的充分必要条件是:A的特征值全为正。只有(3)对称, 且特征值全部大于零, 所以(3)是正定矩阵.例4.2用2次多项式拟合下列数据。>> clear;x=[0.1,0.2,0.15,0,-0.2,0.3];>> y=[0.95,0.84,0.86,1.06,1.50,0.72];>> p=polyfit(x,y,2)p =

1.7432

-1.6959

1.0850 得到二次拟合式:1.7432x^2-1.6959x+1.0850 >> xi=-0.2:0.01:0.3;>> yi=polyval(p,xi);plot(x,y,'o',xi,yi);

例4.3 求函数y=x*sin(x^2-x-1)在(-2,-0.1)内的零点。>> fun=inline('x*sin(x^2-x-1)','x')fun =

Inline function:

fun(x)= x*sin(x^2-x-1)>> fzero(fun,[-2,-0.1])??? Error using ==> fzero at 292 The function values at the interval endpoints must differ in sign.>> fplot(fun,[-2,-0.1]);grid on;

>> [x,f,h]=fsolve(fun,-1.6),[x,f,h]=fsolve(fun,-0.6)Optimization terminated: first-order optimality is less than options.TolFun.x =

-1.5956 f =

1.4909e-009 h =

Optimization terminated: first-order optimality is less than options.TolFun.x =

-0.6180 f =

-3.3152e-012 h =

例4.4求下列方程组在原点附近的解

>> fun=inline('[4*x(1)-x(2)+exp(x(1))/10-1,-x(1)+4*x(2)+x(1)^2/8]','x');[x,f,h]=fsolve(fun,[0,0])Optimization terminated: first-order optimality is less than options.TolFun.x =

0.2326

0.0565 f =

1.0e-006 *

0.0908

0.1798 h =

例4.5 求二元函数f(x,y)=5-x^4-y^4+4*x*y在原点附近的极大值。(等价于求-f(x,y)的极小值)

>> fun=inline('x(1)^4+x(2)^4-4*x(1)*x(2)-5');>> [x,g]=fminsearch(fun,[0,0])x =

1.0000

1.0000 g =

-7.0000 例4.6 用Newton迭代法求下列方程的正根,要求精度为10的-6次 X^2-3x+e^x=2 >> fun=inline('x^2-3*x+exp(x)-2');>> fplot(fun,[0,2]);>> grid on;

%M函数 newton.m function x =newton(fname,dfname,x0,e)if nargin<4,e=1e-4;end x=x0;x0=x+2*e;while abs(x0-x)>e

x0=x;x=x0-feval(fname,x0)/feval(dfname,x0);end

>> dfun=inline('2*x-3+exp(x)');format long;newton(fun,dfun,1.5,1e-6),format short ans =

1.*** 例4.7 用函数y=a*e^(b*x)拟合例4.2的数据。>> fun=inline('c(1)*exp(c(2)*x)','c','x');>> x=[0.1,0.2,0.15,0,-0.2,0.3];y=[0.95,0.84,0.86,1.06,1.50,0.72];>> c=lsqcurvefit(fun,[0,0],x,y)Optimization terminated: relative function value changing by less than OPTIONS.TolFun.c =

1.0997

-1.4923

PAGE 77 1.%Exercise 1(1)roots([1 1 1])%Exercise 1(2)

roots([3 0-4 0 2-1])%Exercise 1(3)p=zeros(1,24);

p([1 17 18 22])=[5-6 8-5];roots(p)

%Exercise 1(4)p1=[2 3];

p2=conv(p1, p1);p3=conv(p1, p2);

p3(end)=p3(end)-4;%原p3最后一个分量-4 roots(p3)2.%Exercise 2

fun=inline('x*log(sqrt(x^2-1)+x)-sqrt(x^2-1)-0.5*x');fzero(fun,2)3.%Exercise 3

fun=inline('x^4-2^x');fplot(fun,[-2 2]);grid on;

fzero(fun,-1),fzero(fun,1),fminbnd(fun,0.5,1.5)

4.%Exercise 4

fun=inline('x*sin(1/x)','x');fplot(fun, [-0.1 0.1]);

x=zeros(1,10);for i=1:10, x(i)=fzero(fun,(i-0.5)*0.01);end;x=[x,-x] x =

Columns 1 through 11

0.0050

0.0152

0.0245

0.0354

0.0455

0.0531

0.0637

0.0796

0.0796

0.1061

-0.0050

Columns 12 through 20

-0.0152

-0.0245

-0.0354

-0.0455

-0.0531

-0.0637

-0.0796

-0.0796

-0.1061

5.%Exercise 5

fun=inline('[9*x(1)^2+36*x(2)^2+4*x(3)^2-36;x(1)^2-2*x(2)^2-20*x(3);16*x(1)-x(1)^3-2*x(2)^2-16*x(3)^2]','x');

[a,b,c]=fsolve(fun,[0 0 0])6.%Exercise 6

fun=@(x)[x(1)-0.7*sin(x(1))-0.2*cos(x(2)),x(2)-0.7*cos(x(1))+0.2*sin(x(2))];[a,b,c]=fsolve(fun,[0.5 0.5])7.%Exercise 7

clear;close;t=0:pi/100:2*pi;

x1=2+sqrt(5)*cos(t);y1=3-2*x1+sqrt(5)*sin(t);x2=3+sqrt(2)*cos(t);y2=6*sin(t);

plot(x1,y1,x2,y2);grid on;%作图发现4个解的大致位置,然后分别求解

y1=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[1.5,2])y2=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[1.8,-2])y3=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[3.5,-5])y4=fsolve('[(x(1)-2)^2+(x(2)-3+2*x(1))^2-5,2*(x(1)-3)^2+(x(2)/3)^2-4]',[4,-4])

8.%Exercise 8(1)clear;

fun=inline('x.^2.*sin(x.^2-x-2)');fplot(fun,[-2 2]);grid on;%作图观察

x(1)=-2;

x(3)=fminbnd(fun,-1,-0.5);x(5)=fminbnd(fun,1,2);

fun2=inline('-x.^2.*sin(x.^2-x-2)');x(2)=fminbnd(fun2,-2,-1);x(4)=fminbnd(fun2,-0.5,0.5);x(6)=2 feval(fun,x)x =

-2.0000

-1.5326

-0.7315

-0.0000

1.5951

2.0000 ans =

-3.0272

2.2364

-0.3582

-0.0000

-2.2080

0

%答案: 以上x(1)(3)(5)是局部极小,x(2)(4)(6)是局部极大,从最后一句知道x(1)全局最小,x(2)最大。

%Exercise 8(2)clear;

fun=inline('3*x.^5-20*x.^3+10');fplot(fun,[-3 3]);grid on;%作图观察

x(1)=-3;

x(3)=fminsearch(fun,2.5);

fun2=inline('-(3*x.^5-20*x.^3+10)');x(2)=fminsearch(fun2,-2.5);x(4)=3;feval(fun,x)ans =

-179

-54

199

%Exercise 8(3)

fun=inline('abs(x^3-x^2-x-2)');fplot(fun,[0 3]);grid on;%作图观察

fminbnd(fun,1.5,2.5)

fun2=inline('-abs(x^3-x^2-x-2)');fminbnd(fun2,0.5,1.5)ans =

2.0000 ans =

1.0000

9.%Exercise 9 close;

x=-2:0.1:1;y=-7:0.1:1;[x,y]=meshgrid(x,y);

z=y.^3/9+3*x.^2.*y+9*x.^2+y.^2+x.*y+9;mesh(x,y,z);grid on;%作图观察

fun=inline('x(2)^3/9+3*x(1)^2*x(2)+9*x(1)^2+x(2)^2+x(1)*x(2)+9');x=fminsearch(fun,[0 0])%求极小值

fun2=inline('-(x(2)^3/9+3*x(1)^2*x(2)+9*x(1)^2+x(2)^2+x(1)*x(2)+9)');x=fminsearch(fun2,[0-5])%求极大值

x =

0

0 x =

-0.3333

-6.0000

10.clear;t=0:24;

c=[15 14 14 14 14 15 16 18 20 22 23 25 28...31 32 31 29 27 25 24 22 20 18 17 16];p2=polyfit(t,c,2)p3=polyfit(t,c,3)

fun=inline('a(1)*exp(a(2)*(t-14).^2)','a','t');

a=lsqcurvefit(fun,[0 0],t,c)%初值可以试探 f=feval(fun, a,t)

norm(f-c)%拟合效果

plot(t,c,t,f)%作图检验

fun2=inline('b(1)*sin(pi/12*t+b(2))+20','b','t');%原题修改f(x)+20 b=lsqcurvefit(fun2,[0 0],t,c)figure

f2=feval(fun2, b,t)

norm(f2-c)%拟合效果

plot(t,c,t,f2)%作图检验

Page 94 chapter5 1.x=[0 4 10 12 15 22 28 34 40];y=[0 1 3 6 8 9 5 3 0];trapz(x,y)ans =

178.5000 2.>> x=[0 4 10 12 15 22 28 34 40];y=[0 1 3 6 8 9 5 3 0];diff(y)./diff(x)

ans =

0.2500

0.3333

1.5000

0.6667

0.1429

-0.6667

-0.3333

-0.5000 3.xa=-1:0.1:1;ya=0:0.1:2;[x,y]=meshgrid(xa,ya);z=x.*exp(-x.^2-y.^3);

[px,py] = gradient(z,xa,ya);Px 4.t=0:0.01:1.5;x=log(cos(t));y=cos(t)-t.*sin(t);dydx=gradient(y,x)

[x_1,id]=min(abs(x-(-1)));%找最接近x=-1的点 dydx(id)5.(1)(2)fun=inline('exp(2*x).*cos(x).^3');quadl(fun,0,2*pi)(3)fun=@(x)x.*log(x.^4).*asin(1./x.^2);quadl(fun,1,3)(4)fun=@(x)sin(x)./x;

quadl(fun,1e-10,1)%注意由于下限为0,被积函数没有意义,用很小的1e-10代替(5)(6)fun=inline('sqrt(1+r.^2.*sin(th))','r','th');dblquad(fun,0,1,0,2*pi)(7)首先建立84页函数dblquad2 clear;

fun=@(x,y)1+x+y.^2;clo=@(x)-sqrt(2*x-x.^2);dup=@(x)sqrt(2*x-x.^2);dblquad2(fun,0,2,clo,dhi,100)%Exercise 6

t=linspace(0,2*pi,100);x=2*cos(t);y=3*sin(t);

dx=gradient(x,t);dy=gradient(y,t);f=sqrt(dx.^2+dy.^2);trapz(t,f)10(1)(2)

%先在程序编辑器,写下列函数,保存为ex5_10_2f function d=ex5_10_2f(fname,a,h0,e)

h=h0;d=(feval(fname,a+h)-2*feval(fname,a)+feval(fname,a-h))/(h*h);d0=d+2*e;

while abs(d-d0)>e d0=d;h0=h;h=h0/2;

d=(feval(fname,a+h)-2*feval(fname,a)+feval(fname,a-h))/(h*h);end %再在指令窗口执行

fun=inline('x.^2*sin(x.^2-x-2)','x');d=ex5_10_2f(fun,1.4,0.1,1e-3)13.fun=inline('5400*v./(8.276*v.^2+2000)','v');quadl(fun,15,30)

下载数学建模实验项目八狐狸与野兔问题[最终版]word格式文档
下载数学建模实验项目八狐狸与野兔问题[最终版].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    选修课数学实验与建模matlab作业

    实验一一元函数微分学 实验1 一元函数的图形(基础实验) 实验目的 通过图形加深对函数及其性质的认识与理解, 掌握运用函数的图形来观察和分析 函数的有关特性与变化趋势的方法......

    数学建模与数学实验网络课程学习心得

    数学建模网络课程学习心得 最近学习了黄廷祝教授的《数学建模与数学实验》的网络课程培训,黄老师主要从数学建模课程概况、数学建模教学方法等方面进行了讲解,既有理论深度,又......

    投资问题数学建模

    数学模型第一次讨论作业问题:某部门现有资金10万元,五年内有以下投资项目供选择:项目A:从第一年到第四年每年初投资,次年末收回本金且获利15%;项目B:第三年初投资,第五年末收回本金......

    数学建模摘要及问题

    2008年高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网......

    数学建模生日问题5篇范文

    数学建模实验报告 试验名称:生日问题 问题背景描述: 在100个人的团体中,如果不考虑年龄的差异,研究是否有两个以上的人生日相同。假设每人的生日在一年365天中的任意一天是等可......

    数学建模A交通事故车流量问题(合集)

    建模A第三问思路: 此问题可以用排队论知识来解决, 模型说明:发生交通事故时,事故车辆占用了两个车道,只剩下一个车道能通行,而此时有三个队列的车辆在排队,此时可以看成是单服务台......

    关于售书问题的数学建模

    关于售书问题的数学建模 1一、问题的提出 1、问题的描述 一家出版社准备在某市建立两个销售代销点,向7个区的大学生售书,每个区的大学生数量(单位:千人)已经表示在图上.每个销售代......

    《数学建模实验-血液酒精浓度》

    数学建模实验实验目的运用药物注射模型,熟练使用MATLAB曲线拟合方法,解释饮酒驾车的一些实际问题。实验原理由于酒精不需要进入肠道即可被吸收,且胃对其吸收速率也非常快,本题应......