七年级数学上册第四章一元一次方程章综合与测试《建立一元一次方程模型》典型例题素材苏科版讲解

时间:2019-05-13 14:39:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《七年级数学上册第四章一元一次方程章综合与测试《建立一元一次方程模型》典型例题素材苏科版讲解》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《七年级数学上册第四章一元一次方程章综合与测试《建立一元一次方程模型》典型例题素材苏科版讲解》。

第一篇:七年级数学上册第四章一元一次方程章综合与测试《建立一元一次方程模型》典型例题素材苏科版讲解

《建立一元一次方程模型》典型例题

例1 把下面式子中的一元一次方程找出来,写在下面的括号里. 2+3=5,2x51,x30,2x3,2x0 4一元一次方程:{ } 例2 根据下列条件列方程:(l)某数的3倍比7大2;(2)某数的1比这个数小1; 3(3)某数与3的和是这个数平方的2倍;(4)某数的2倍加上9是这个数的3倍;(5)某数的4倍与3的差比这个数多1.

例3 据2001年中国环境状况公报,我国水蚀和风蚀造成的水土流失面积达356万平方公里,其中风蚀造成的水土流失面积比水蚀造成的水土流失面积多26万平方公里,问水蚀与风蚀造成的水土流失面积各是多少平方公里?请列出解决这个问题的方程.

例4 判断下列各式是不是方程,如果是指出已知数和未知数;如果不是,说明为什么?(1)3x20;(2)xy10;(3)2534;(4)xy1;(5)3x2x1;(6)x13x2.例5 己知x2是方程3x12xm的解,求m的值. 例6 根据下列条件列出方程

(1)某数的平方比它的5倍小-3,求这个数;(2)某数的223与15的差的一半比这个数大20%,求这个数; 5(3)一根铁丝,第一次用去了它的一半,第二次用了剩下的一半多1米,结果还剩2.5米,求这根铁丝的长;

(4)有两个运输队,第一队32人,第二队有28人,现因任务需要,要求第一队人数是第二队人数的2倍,需林第二队抽调多少人到第一队?

例7 某工程队每天安排120人修建水库,平均每天每人能挖去5m或运土3m,为了使挖出的土及时运走,问应如何安排挖土和运土的人数?

1 例8 若x2是关于x的方程xkxk50的一个解,则常数k____.2

参考答案

例1 分析 判断是否是一元一次方程应注意以下几个方面:(1)必须是等式;

(2)等式中必须含有一个未知数,且未知数的指数是1. 解 一元一次方程:2x51,x30,2x0 4说明:2+3=5和2x3,都不是一元一次方程,因为前者无未知数,后者不是等式. 例2 分析 要列方程,首先要认真审题,明确未知数,并设未知数,然后根据题中的条件,找出相等关系,列出方程,解(1)设某数为x,则有:3x72;或 3x72;或3x27;

(2)设某数为x,则有:

111x1x;或 xx1;或xx1;333222(3)设某数为x,则有:x32x;或x2x3;或x2x3;

(4)设某数为x,则有:2x93x;或 2x3x9;或 3x2x9;

(5)设某数为x,则有 4x3x1;或 4x31x;或 4xx13 说明:此题条件中的大(小)、多(少)、和(差)、倍等实际上说的是相等关系:

大数-小数=差; 小数十差=大数; 大数一差=小数.

例3 分析 根据已知条件,我们可以知道,我国水蚀与风蚀造成水土流失的总面积,又知道,风蚀造成的水土流失面积比水位造成的水土流失面积多,那么即使我们没学过本节知识,利用小学学过的关于和差问题的公式,我们仍然能够计算出本题的正确答案.

风蚀造成的水土流失面积=(风蚀、水蚀造成的水土流失之和+风蚀、水性造成的水土流失之差)+2 水蚀造成的水土流失面积=(风蚀、水蚀造成的水土流失之和-风蚀、水蚀造成的水土流失之差)÷2

但是,和差公式需要死记硬背。

如果利用这一节学过的知识来解本题,要简便很多.

(1)水蚀与风蚀造成的水土流失总面积为356万平方公里,即水蚀造成的水土流失面积+风蚀造成的水土流失面积=356万平方公里.(2)可以设水蚀造成的水土流失面积为x平方公里,又知“风蚀造成的水土流失面积比水蚀造成的水土流失面积多26万平方公里”,所以风蚀造成的水土流失面积为(x26)万平方公里.

(3)把x与(x26)代入①中的等式并省略不参与计算的单位名称,就得到方程。解 设水蚀造成的水土流失面积为x平方公里,则有

x(x26)356

说明:(1)这个方程并不难解,同学们在学习下一节之后,将会有更深的体会。(2)对题目中出现的表示同一种量的数(在本题中是表示水土流失面积的数)要注意分清哪个数大、哪个数小,要仔细分析列式时该用加号、还是该用减号。初学者要尽量避免在这些地方发生错误。

例4 分析 判断一个式子是不是方程,主要根据方程的概念;一是等式,二是含有未知数,二者缺一不可。

解(1)是。3,-2,0是已知数,x是未知数。(2)是:-1,0是已知数,x、y是未知数。(3)不是。因为它不含未知数。

(4)是。-1,0是已知数,x、y是未知数。(5)不是。因为它不是等式。

(6)是。-1,3,2是已知数,x是未知数。

说明: 未知数的系数如果是1,这个省略是1也可看作已知数,但可以不说,已知数应该包括它的符号在内。

例5 分析 欲求m的值,由己知条件x2是方程3x12xm的解,也就是将x2代入方程后左、右两边的值相等,即左边321,右边22m。

∵ 左边=右边,∴32122m,即可求出m. 解 ∵x2是方程3x12xm的解,∴ 将x2代入方程得:

32122m

∴ m1.例6 解(1)设某数为x,根据题意,得5xx3.2(2)设某数为x,根据题意,得13(x15)x20%x.25(3)设这根铁丝的长为x,根据题意,得 x111xxx12.5.222(4)设需从第二队抽调x人到第一队. 根据题意,得32x2(28x).说明:本题要求根据条件列方程,解题关键在于找到数量之间的有关运算和等量关系.列式时要根据不同的问题,适时添加括号以体现运算的顺序.对没有给出未知数的问题,列方程前先要正确设出未知数.

例7 解 设安排x人挖土,则运土人数为(120x)人,依题意得

5x3(120x).解得x45,则120x75.答:应安排45人挖土,75人运土.

说明:本题中有一句重要的话体现了等量关系,即“使挖出的土及时运走”,这就是说挖土与运土的总数应相等.本例中人数分配的目的是使挖土与运土的体积相同,实际上隐含的是人数分配中挖土人数:运土人数=3:5,依据这个等量关系也可以列出方程来.

2例8

因为x2是关于x的方程xkxk50的一个解,所以222kk50,即9k0,故k9,填9.

说明:本题解法中利用了“方程的解”的概念求解.

第二篇:七年级数学上册5.4主视图、左视图、俯视图典型例题素材苏科版讲解

《主视图、左视图、俯视图》典型例题

例1.一个物体的主视图是三角形,试说出该物体的形状。

例2.如图所示的圆锥的三视图是__________。A.主视图与左视图是三角形,俯视图是圆 B.主视图与左视图是三角形,俯视图是圆和圆心 C.主视图是圆和圆心,俯视图和左视图是三角形 D.主视图和俯视图是三角形,左视图是圆和圆心

例3.画出如图所示立体图形的三视图(相当于在平放着的一块砖的中间靠后又立放着一块砖)。

例4.如图,根据下列三视图,画出与它对应的立体图形。

例5.根据已知三视图,画与之对应的立体图形(如图)。例6.根据给出的三视图,确定它们对应的立体图形并画出示意图(如图)。

例7.画出图所示物体的三视图.图中箭头表示画正视图时的观察方向。

例8.如图是由几个小正方体所搭几何体的俯视图.小正方形中的数字表示在该位置的小正方体的个数,请画出这个几何体的左视图。

例9.如图是由6块积木搭成的,这几块积都是相同的小正方体.指出下图中三个平面图形是它的哪个视图.

参考答案

例1:分析

只给出一个视图的条件来判定物体的形状,根据常见的立体图形分类,正视图不可能是球或圆柱,那么可能是圆锥、棱锥或三棱柱,显然,答案不唯一,这是一个开放题。

说明:由视图描述物体的形状要借助于三个视图综合分析、想象,仅仅一个方向的视图只能了解物体的部分信息.同时,合理猜想,结合生活经验估测也非常重要。

例2:分析

本题考查画立体图形的三视图的能力,由物体摆放的方式、位置可知:正视图和侧视图都是等腰三角形,俯视图为圆。

答案:A 说明:物体摆放的方式位置不同,视图也会有所区别,千万不能因为物体形状相同,就认为它的视图也一样了。

例3:解:三视图如下:

说明:上列中的正视图能表示物体的上、下、左、右四个面:俯视图能表示物体的左、右、前、后;左视图能够表示物体的上、下、前、后.上、下、左、右四个面易于判断,关键在于判断前、后.画图时应特别注意俯视图和左视图的前、后对应关系,俯视图的下边和左视图的右边都是表示物体前面.如果把左视图画成如图所示的那样就错了。

例4:解:根据三视图的条件,可知立体图形应是三棱锥。

上图就是满足三视图的立体图形。说明:本题主要考查的是展开图的折叠。

例5:解:根据图形条件以及三视图,可以判断它是一个正方体与圆台组合而成的立体图形。

依题意,有

如图,就是满足三视图条件的立体图形。

说明:在给出了两例之后有了一些感性认识,这时不难发现从俯视图可以确定立体图形的底面,从正、左视图可以确定立方体的侧面,两个认识相结合就可以确定这个立体图形的形状。

例6:解:根据三视图可知,它应是一个带槽的立方体,是在一个长方体中间切下去一个三棱柱。

示意图如图:

说明:这是一个在日常生活中也可见到的带凹槽的立体图形,凹下去的槽是什么形状只有靠正视图及俯视图才可以判断。

例7:分析 按箭头所示方向观察这个物体时,只能看这个物体上用阴影表示的两个面.它们都是长方形,但长、高及大小都不相同.两个长方形之间没有空隙,所以正视图(如图)是由两个长方形组成的,二者是互相连接的,一个在上,一个在下。

左视图(如图)也是一上一下两个长方形组成的,二者左侧对齐。

俯视图(如图)是由上向下看到的两个长方形,较小的一个在另一个的内部,且有一条边在较大的长方形的边上。解

说明:初学者必须注意的一件事是:苦思苦想不如亲身实践,即观察实物.就此题而言,用两个一大一小的纸盒(太小了不利于观察,形状比较接近于图中的长方体更好),按图所示的情况摆好并进行观察,这是很容易办到的事情.实在没有纸盒、木块等,在一块砖上适当立半块砖也可以.总之,要在实践中提高观察力和空间想象力。

例8:分析

本题是个作图题,如果按照常见的解法,必须要提供物体的原型,但是本题却没有,它只给出了俯视图,显然,只根据俯视图是无法判定物体原型的,但是,它在相应的小正方形中给出了表示该位置的小正方体的个数,由此我们可以确定该立体图形的原型.既然能够确定立体图形,那么就可画出它的左视图。

答案 如图,说明: 本题由正视图判定出立体图形的原型,再由立体图形的原型来作它的左视图,体现了由特殊——一般一特殊的解题规律。

例9:分析

这个立体图形不像圆锥的形状那样规则.这就需要我们注意该图在各层、各侧的形状特征上有什么不同之处,然后根据这些形状特征来画出或辨认三视图,注意到:从正面看共有3层,最下层有3块积木.故选第二个平面图形;从左侧看,有2列,其中一列有3层,另一列只有1层,故选第一个平面图形;从上面俯视,整个积木摆放呈“

”形,其中横摆着的有3块积木,竖摆着的有2块积木,而横摆、竖摆的积木中有1块重复了,故选第三个平面图形。

答案

从前至后依次填入左视图,正视图,俯视图。

第三篇:人教版 2018年 七年级数学上册 一元一次方程 章末检测卷

人教版 2018年 七年级数学上册 一元一次方程 章末检测卷

一、选择题:

1、某种书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分按八折付款.设一次购书数量为x本(x>10),则付款金额为()A.6.4x元

B.(6.4x+80)元

C.(6.4x+16)元

D.(144-6.4x)元

2、下列各式运用等式的性质变形,错误的是()A.若,则

B.若,则

C.若,则

D.若,则

3、一个两位数x和一个三位数y,若将两位数x放在三位数y的左边组成一个五位数,则组成的这个五位数表示为()

A、xy

B、10000x+y

C、100x+1000y

D、1000x+y

4、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价()

A.高12.8% B.低12.8% C.高40%

D.高28%

5、若方程的解与关于的方程的解相同,则的值为().A.B.C.D.6、下列一元一次方程中进行合并同类项,正确的是().A.已知x+7x-6x=2-5,则-2x=-3 B.已知0.5x+0.9x+0.1=0.4+0.9x,则1.5x=1.3 C.已知25x+4x=6-3,得29x=3 D.已知5x+9x=4x+7,则18x=7

7、已知x=﹣2是方程5x+12=﹣a的解,则a

2+a﹣6的值为()

A.0

B.6

C.﹣6

D.﹣18

8、已知|3m-12|+=0,则2m-n等于().A.9

B.11

C.13

D.15

9、把方程中的分母化为整数,正确的是()

A.B.C.D.10、我就买了20本,结果便宜了1.6元,你们猜猜原来每本的价格是多少?”原来每本的价是()A.0.4元

B.0.5元

C.0.6元

D.0.7元

11、某车间有26名工人,每人每天可以生产800个螺栓或1 000个螺母,1个螺栓需要配2个螺母,为使每天生产的螺栓和螺母刚好配套,设安排x名工人生产螺栓,则下面所列方程正确的是()

A.2×1 000(26x)=800x

B.1 000(1

3x)=800x C.1 000(26

x)=2×800x

D.1 000(26

x)=800x

12、某商贩在一次买卖中,同时卖出两件上衣,售价都是120元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他().A.赔16元 B.不赚不赔

C.赚8元 D.赚16元

二、填空题:

13、若方程是一个一元一次方程,则等于

.14、关于x的方程ax+4=1-2x的解恰好为方程2x-1=5的解,则a=

.15、已知x

2﹣2x=5,则代数式2x2

﹣4x﹣1的值为.16、已知a、b、c、d为有理数,现规定一种新运算,如

那么当

时,则x的值为

.17、某次数学测验共20道选择题,规则是:选对一道得5分,选错一道得-1分,不选得零分,王明同学的卷面成绩是:

选对16道题,选错2道题,有2道题未做,他的得分是

.18、某服装店同时以300元的价钱出售两件不同进价的衣服,其中一件赚了20%,而另一件亏损了20%,则这单买卖是________了(填“赚”或“亏”).三、计算题:

19、解方程:3x+2=7-2x.20、解方程:3x﹣7(x﹣1)=3﹣2(x+3)

21、解方程:

22、解方程:

四、解答题:

23、关于x的方程3x-(2a-1)=5x-a+1与方程有相同的解,试求的值

24、为了开展阳光体育运动,让学生每天能锻炼一小时,某学校去体育用品商店购买篮球与足球,篮球每只定价100元,足球每只定价50元.体育用品商店向学校提供两种优惠方案:①买一只篮球送一只足球;②篮球和足球都按定价的80%付款.现学校要到该体育用品商店购买篮球30只,足球x只(x>30).(本题14分)

(1)若该学校按方案①购买,篮球需付款

元,足球需付款

元(用含x的式子表示);

若该学校按方案②购买,篮球需付款

元,足球需付款

元(用含x的式子表示);(2)若x=40,请通过计算说明按方案①、方案②哪种方案购买较为合算?

25、随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某

教学网站策划了A、B两种上网学习的月收费方案:

A方案:月租7元,可上网25小时,若超时,超出部分按每分钟0.01元收费; B方案:月租10元,可上网50小时,若超时,超出部分按每分钟0.01元收费; 设每月上网学习时间为小时.(1)当>50时,用含有x的代数式分别表示A、B两种上网的费用;(2)当x=100时,分别求出两种上网学习的费用.(3)若上网40小时,选择哪种方式上网学习合算,为什么?

26、我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说|x|表示在数轴上数x与

数0对应点之间的距离;这个结论可以推广为:|x﹣y|表示在数轴上数x、y对应点之间的距离;在解题中,我们常常运用绝对值的几何意义.①解方程|x|=2,容易看出,在数轴上与原点距离为2的点对应的数为±2,即该方程的解为x=±2.②在方程|x﹣1|=2中,x的值就是数轴上到1的距离为2的点对应的数,显然x=3或x=﹣1.③在方程|x﹣1|+|x+2|=5中,显然该方程表示数轴上与1和﹣2的距离之和为5 的点对应的x值,在数轴上1和﹣2的距离为3,满足方程的x的对应点在1的右边或﹣2的左边.若x的对应点在1的右边,由图示可知,x=2;同理,若x的对应点在﹣2的左边,可得x=﹣3,所以原方程的解是x=2或x=﹣3.根据上面的阅读材料,解答下列问题:(1)方程|x|=5的解是_______________.(2)方程|x﹣2|=3的解是_________________.(3)画出图示,解方程|x﹣3|+|x+2|=9.参考答案

1、C

2、C

3、D

4、D

5、B

6、C

7、A.8、C

9、D

10、A

11、C

12、A

13、-3

14、-315、9.16、-3

17、28

18、亏;

19、x=1

20、x=

21、-4/3

22、x=-13;

23、解方程,得x=4 ;

25、(1)方案A费用为:0.01x+6.75.方案B费用为:10+0.01(x-50)=0.01x+9.5.(2)当x=100时,方案A费用为:0.01x+6.75=7.75.方案B费用为: 0.01x+9.5=10.5.(3)当x=40时,方案A费用为:0.01x+6.75=7.15.方案B费用为:10.∵7.15<10,∴选择A方式上网学习合算.26、(1)x=5或-5;(2)x=5或-1;(3)x=5或-4;

把x=4代人方程3x-(2a-1)-5x-a+1,得12-(2a-1)=20-a+1解得a=-8 所以

24、(1)3000,(2)方案①;2400,= 4000元 = 3500元;方案②因为,方案① < 方案②,所以选方案①

第四篇:七年级数学上册第五章一元一次方程4应用一元一次方程—打折销售典型例题素材北师大版解析

《应用一元一次方程——打折销售》典型例题

例1 一种蔬菜加工后出售,单价可提40%,但重量要降低20%,现有未加工的这种蔬菜1000千克,加工后共卖了1568元,问不加工每千克可卖多少钱?1000千克能卖多少钱?比加工后少卖多少钱?

例2 某企业生产一种产品,每件成本价400元,销售价510元,为了进一步扩大市场,该企业决定降低销售价的同时降低生产成本.经过市场调研,预计下季度这种产品每件销售价降低4%,销售量将提高10%,要使销售利润保持不变,该产品每件的成本价应降低多少元?

例3(中考题)某商品的标价是1100元,打八折(按标价的80%)出售,仍可获利10%,则此商品的进价是________元.

例4 某商品按进价的百分之几标价,然后再8折优惠销售,这件商品的获得率仍为20%.

参考答案

例1 分析 本题的关键是第一问,第一问求出其他问题就解决.由题意可知如下相等关系:

加工后的蔬菜重量×加工后的蔬菜单价=1568元

而加工后的蔬菜重量=1000×(1-20%),如果设加工前这种蔬菜每千克可卖x元,则加工后这种蔬菜每千克为(1+40%)x元,故可得方程.

(120%)(140%)x1568

解 设不加工每千克可卖x元,依题意,得1000 解方程得:x1.4

15681400168

所以1000x1400 答:不加工每千克可卖1.4元,1000千克能卖1400元,比加工后少卖168元.

说明:在计算数比较难算的题时,我们可以借助于计算器进行计算.

例2 分析 由已知可得如下相等关系

调整成本前的销售利润=调整成本后的销售利润

若设该产品每件的成本价应降低x元,假定调整前可卖m件这种产品,则调整前的销售利润是(510-400)m,而调整后的销售阶为510(l-4%),调整后的成本价为 400-x.调整后的销售数量

m(l+10%),所以调整后的销售利润是:[510(14%)(400x)](110%)m,由相等关系可得方程

[510(14%)(400x)](110%)m(510400)m

解 设该产品每件的成本价应降低x元,降价前可销售该产品m件,依题意,得[510(14%)(400x)](110%)m(510400)m

解方程,得x10.4

答:该产品每件的成本价应降低10.4元.

说明:这里的m也可以不设,以一件为例去研究这一问题,就可直接列出方程:[510(14%)(400x)](110%)510400

例3 分析:根据“利用=销售价-进货价,利润率=利润÷进货价×100%”,假设商品的进价为a元,则商品的售价为(a10%a)元时,可获利10%.

解:设商品的进价为a元. 则a(110%)110080%

a800

答:此商品的进价是800元.

说明:打折销售是我们身边的数学事实,每个人都应了解它,关键是掌握“进货价”“销售价”“利润”等名词术语的意义,理解有关数量关系.

例4 解 设该商品的进价为m元,按进价的x%标价可满足要求.

根据题意,得0.8mx%m20%.m解得x150.

答:按进价的150%(即1.5倍)标价,然后再8折销售,获利率为20%. 说明:解应用题中的“打折销售”问题,首先要熟悉“进价”、“标价”、“售价”、“打折”、“利润”、“利润率”这些商业名词的含义,另外还要清楚反映进行、标价、售价、打折、利润、利润率之间关系的公式才能准确的列出方程.

(1)在我们现实生活中,购买商品和销售商品中,经常会遇到进价、标价、售价、打折、利润、利润率等概念.

(2)基本关系式:①利润=售价—进价 ②售价=标价×折数 ③利润率=

利润.由进价①②可得出④利润=标价×折数-进价.由③④可得出⑤利润率=

标价折数-进价.

进价

第五篇:19七年级数学上册 4.2一元一次方程的解法教案苏科版

4.2 解一元一次方程(4)

一、教材分析: 1.学习目标:

知识与技能:知道解一元一次方程的一般步骤,能灵活运用去分母、去括号、移项、合并同类项、系数化为1等五大步骤解一元一次方程.过程与方法:巩固方程解法,经历求解过程,能体会到解法应根据具体方程本身特点而定.情感、态度与价值观:体会化归思想——把复杂变简单,将未知变已知的作用,体会数学的应用价值.2.重、难点:利用“去分母”将方程作变形处理.二、教材处理: 1.情景创设:

毕达哥拉斯是古希腊著名的数学家,有一次有位数学家问他:“尊敬的毕达哥拉斯,请告诉我,有多少名学生在你的学校里听你讲课?” 毕达哥拉斯回答说:“我的学生,现在有12在学习数学,14在学习音乐,17沉默无言,此外,还有三名妇女.”算一算:毕达哥拉斯的学生有多少名?

2.学生活动、意义建构、数学理论:

由情景问题入手,引导学生审清题意,根据等量关系:学生总数的学生总数的1712+学生总数的14++3=学生总数列出方程.即设毕达哥拉斯的学生有x名,由题意得x/2+x/4+x/7+3=x.学生独立思考问题,尝试解方程,交流自己的解法,相互加以比较.(生:①先移项再合并同类项;②先合并同类项后移项;③两边同时乘以28,56,84„„)学生比较上述方法,判断选择,引入——去分母.3.数学运用:

结合情景问题的解法,师生互动处理课本P123例

7、例8.反馈矫正学生出现的问题,让学生展开讨论,发现解答时出错之处.去分母时须注意:(1)确定各分母的最小公倍数;(2)不要漏乘没有分母的项;(3)分数线有括号作用,去掉分母后,若分子是多项式,要加括号,视多项式为一整体.建议进行专项训练,如x-32,-

x-32乘以6,8„„

用心

爱心

专心

概括解一元一次方程一般步骤,强调变形时各步易出现错误的内容.习题练习:见课本P124练一练1,2,3 思维拓展:见课本P124议一议

x-20.2-

x10.5=3;又如

0.1x0.03-

0.9-0.2x0.7=1(提示:分子、分母是小数、分数的可以首先利用分数的基本性质将其化为整数系数,然后再解方程.)4.回顾反思:

(1)回顾去分母注意事项,见上面数学运用.(2)本课时蕴涵的数学思想方法主要是化归思想.解方程的过程就是通过去分母、去括号、移项、合并同类项、(未知数)系数化为1等步骤,把一个一元一次方程逐步转化为x=a的形式.这是一个等量变形的过程,也是一个化归的过程.(3)具体解方程时,可根据具体情况,有些步骤可能用不上;有些步骤可以前后顺序颠倒;有时还可以省略一些步骤,以使运算简化.用心

爱心

专心 2

下载七年级数学上册第四章一元一次方程章综合与测试《建立一元一次方程模型》典型例题素材苏科版讲解word格式文档
下载七年级数学上册第四章一元一次方程章综合与测试《建立一元一次方程模型》典型例题素材苏科版讲解.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐