专题:初中数学公理定理
-
初一数学中的公理定理
(一)学过的公理: 1、直线公理:两点确定一条直线。 2、线段公理:两点之间,线段最短。 3、垂线公理:过一点有且只有一条直线与已知直线垂直。 4、平行公理:过直线外一点,有且只有一条直
-
备战2014年数学中考————初中平面几何定理公理总结
初中平面几何定理公理总结
一、线与角
1、两点之间,线段最短
2、经过两点有一条直线,并且只有一条直线
3、对顶角相等;同角的余角(或补角)相等;等角的余角(或补角)相等
4、经过直线 -
高中数学立体几何模块公理定理
高中数学立体几何模块公理定理汇编
Hzoue/2009-12-12
公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
Al,Bl,且Aα,Bαlα.(作用:证明直线在平面内)
公理2 过不在 -
初中几何证明的所有公理和定理
初中几何证明的所有公理和定理 1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等 4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直 6 直
-
高二数学 立体几何的概念、公理、定理
立体几何的概念、公理、定理王 春 老师 编辑 2007-12 -20一.写出以下公理、定理,并根据图形写出它们的条件与结论。(一)立体几何三公理公理1:如果一条直线上的两点在一个平面内,那
-
初中数学相关定理[范文大全]
1,三角形内角和定理三角形三个内角的和等于180°
2, 推论1直角三角形的两个锐角互余
3, 推论2三角形的一个外角等于和它不相邻的两个内角的和
4,推论3三角形的一个外角大于 -
数学公理
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的 -
真命题与公理、定理
真命题与公理、定理
初学几何的同学,对真命题、公理、定理之间的区别与联系容易混淆。现作如下辨析,供同学们参考。
真命题就是正确的命题,即如果命题的题设成立,那么结论一定成 -
证明、公理、平行线性质定理(合集)
证明的必要性、公理与定理、平行线的判定(公)定理、平行线的性质(公)定理基础知识1.证明:2.公理:3.定理:4.等量代换:公理:5.平行线的判定定理:定理:公理6.平行线的性质定理定理:基础习
-
初三数学证明及相关公理、定理、推论(共5篇)
第一次课:证明及相关公理、定理、推论一、考点、热点回顾1、《证明(一)》知识点回顾:全等三角形的四个公理和一个推论公理三遍对应相等的两个三角形全等。(SSS)公理两边及其夹角
-
初中数学几何定理集锦
初中数学几何定理集锦
1。同角(或等角)的余角相等。
3。对顶角相等。
5。三角形的一个外角等于和它不相邻的两个内角之和。
6。在同一平面内垂直于同一条直线的两条直线是平行 -
初中数学常用定理(精选5篇)
1圆是定点的距离等于定长的点的集合
2圆的内部可以看作是圆心的距离小于半径的点的集合
3圆的外部可以看作是圆心的距离大于半径的点的集合
4同圆或等圆的半径相等
5到定点 -
初中数学定理证明
初中数学定理证明数学定理三角形三条边的关系定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和三角形内角和定理三角形三个内角的和等于180°推论1直
-
定义 定理 公理 定律的区别
1 / 2
定义、定理、定律和定则表面上看定义、定理和定律都是由一些文字性的叙述加上数学表达式所组成,形式上确实差别不大,而老师上课往往会注重了它们在应用方面的讲授,忽略了 -
初中定理
初中几何证明的依据
1.两点连线中线段最短.
2.同角(或等角)的余角相等. 同角(或等角)的补角相等.对顶角相等.
3.平面内经过一点有且只有一条直线与已知直线垂直. 直线外一点与 -
命题与证明之公理定理[推荐阅读]
公理和定理教学要求:1 了解公理与定理到概念,以及他们之间的内在联系;2 了解公理与定理都是真命题,它们都是推理论证的依据;3 掌握教材十条公理和已学过的定理。重点难点十条公理
-
经典命题逻辑公理系统定理证明算法设计
Http://logic.zsu.edu.cn/journal.htm 逻辑与认知 Vol.2, No.4, 2004---收稿日期:2004-11-25;作者简介:杜国平,1965 年生,男,汉族,江苏盱眙人,南京大学副教授。基金项目:国家社科基金
-
2021年初中数学几何定理总结
2021年初中数学几何定理总结撰写人:___________日期:___________2021年初中数学几何定理总结、过两点有且只有一条直线、两点之间线段最短3、同角或等角的补角相等4、同角或等