专题:等差数列知识点复习
-
等差数列知识点
精英辅导学校杨景勋专用2011年12月16日星期五
(一)等差数列I1、等差数列{an}中,a1=1,公差d=3,an=2005则n=_____
2、等差数列{an}中,若a4+a6+a8+a10+a12=120,则2a10-a12的值为______ -
等差数列知识点总结
等差数列1. 定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示。用递推公式
-
等差数列知识点解读(最终定稿)
等差数列一、学习目标:等差数列的概念、性质及前n项和求法。*1.设数列an的前n项和为Sn.已知a15,an1Sn3n,nN.设bnSn3n,求数列bn的通项公式;解:依题意,Sn1Snan1Sn3n,即Sn12Sn3n,由此得Sn1
-
等差数列复习教案
等差数列
高考考点:
1.等差数列的通项公式与前n项和公式及应用;
2.等差数列的性质及应用.
知识梳理:
1.等差数列的定义:2.等差中项3.通项公式4.前n项和公式5.等差数列的性质(基 -
等差数列复习学案
友好三中高一数学学案设计人:刘磊组长审核:设计时间:2009-3-1 讲授时间:等差数列复习一、学习目标:1、通过学案能灵活运用通项公式求等差数列的首项、公差、项数、指定项,并通过通
-
等差数列复习(推荐阅读)
6.2 等差数列 尊敬的各位评委、各位老师,大家好!我抽签的序号是14号,叫„„,来自高三年级,我说课的题目是“等差数列”复习课的第一课时,我将从教材分析、学情分析、教学目标分析
-
等差数列知识点解析(推荐阅读)
等差数列(一)等差数列是指相邻两数字之间的差值相等,整列数字是依次递增、递减或恒为常数的一组数字。等差数列中相邻两数字之差为公差,通常用字母d来表示,等差数列的通项公式为a
-
等差数列、等比数列知识点梳理
等差数列和等比数列知识点梳理 第一节:等差数列的公式和相关性质 1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:anan1d(d为
-
等差数列知识点+基础练习题
等差数列知识点1.等差数列的定义:anan1d(d为常数)(n2); 2.等差数列通项公式: ana1(n1)ddna1d(nN*) , 首项:a1,公差:d,末项:an推广: anam(nm)d. 从而d 3.等差中项 (1)如果a,A,b成等差数列,那么
-
数列专题一 等差数列知识点
数列专题一 等差数列知识点
——等差、等比数列是重要的、基本的数列,许多其它数列要转化成这种数列来处理,要站好这块地盘
一、建构知识网络
1.定义:an1and(常数)(nN*)
2.通项公 -
等差数列复习课教案
等差数列复习课 (一) 三维目标 1. 知识与技能:复习等差数列的定义、通项公式、前n项和公式及相关性质. 2. 过程与方法:师生共同回忆复习,通过相关例题与练习加深学生的理解. 3. 情
-
等差数列复习课(第一课时)
等差数列复习课(第一课时)濮阳市二高王卓原创 ☆考纲要求:1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关
-
等差数列一轮复习导学案
等差数列考纲要求1.了解等差数列与一次函数的关系.2.理解等差数列的概念.3.掌握等差数列的通项公式与前n项和公式;能在具体的问题情境中,识别数列的等差关系,并能运用有关知识解决问
-
等差数列复习课教案(公开课)
等差数列复习课 宜良县职业高级中学 董家金 (一) 教学目标 1.知识与技能:复习等差数列的定义、通项公式、前n项和公式及相关性质. 2.过程与方法:师生共同回忆复习,通过相关例题与
-
等差数列专题
等差数列的运算和性质专题复习【方法总结1】(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公
-
等差数列复习教案(学生补课用)
等差数列重点导读1.若{an}为等差数列,且满足则am+an=ap+aq(m,n,p,q∈N*)2.在等差数列{an}中,下标成等差数列,且公差为m的项,ak,ak+m,ak+2m,„,(k,m∈N*)组成数列.若{an},{bn}是等差数列,
-
高三第一轮复习:《等差数列》(文科)教案
高三第一轮复习:等差数列及其性质(一)(文科)厦门理工学院附属中学徐丁钟一、【课标要求】1.理解等差数列的概念;掌握等差数列的通项公式和前n项和公式;2.能利用等差数列的知识解决有
-
高中数学必修5高中数学必修5《等差数列复习》教案
等差数列复习知识归纳 1. 等差数列这单元学习了哪些内容? 定等差数列通义项前n项和主要性质 2. 等差数列的定义、用途及使用时需注意的问题: n≥2,an -an-1=d (常数) 3. 等差