专题:二次函数在闭区间
-
二次函数在闭区间上的最值
二次函数的最值的教学设计一、教学内容分析二次函数在高考中占有重要的地位,而二次函数在闭区间上的最值在各个方面都有重要的应用,主要考察我们分类讨论和数形结合思想。这节
-
二次函数在闭区间上的最值说课稿
《二次函数在闭区间上的最值问题》说课稿 各位评委老师,大家好! 我是高一年级的数学老师史红红,今天我要进行说课的课题是《二次函数在闭区间上的最值问题》。下面我将从教材分
-
二次函数在闭区间上的最值问题(五篇范文)
“二次函数在闭区间上的最值问题”课件设计原理及实现 1. 课件的教学设计要点 ⑴ 教材的知识脉络和学生原有的知识经验分析 二次函数是最简单的非线性函数之一,自身性质活跃,
-
二次函数在闭区间上的最值问题教案设计
二次函数在闭区间上的最值问题教案设计 设计意图: 同学们学习了二次函数以后,有一类问题就是讨论二次函数在闭区间上的最值问题,同学们可能感觉不太好做。这节课就这样一类
-
二次函数闭区间上的最值问题(5篇)
二次函数闭区间上的最值问题与根的分布 一、二次函数闭区间上的最值问题 一元二次函数的区间最值问题,核心是对函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在
-
二次函数在区间上的最值
二次函数在区间上的最值问题 教学目的:1.根据函数的概念和函数的单调性研究二次函数 在区间的最值;2.进一步掌握数形结合相思和分类讨论思想. 教学重点:二次函数在区间上的最值
-
二次函数
2.二次函数定义__________________________________________________二次函数(1)导学案
一.教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围 -
二次函数
?二次函数?测试一.选择题〔36分〕1、以下各式中,y是的二次函数的是()A.B.C.D.2.在同一坐标系中,作+2、-1、的图象,那么它们()A.都是关于轴对称B.顶点都在原点C.都是抛物线开口向上D.以上
-
闭区间上连续函数性质证明
§2 闭区间上连续函数性质的证明 教学目的:掌握闭区间上连续函数性质证明思路与方法,加深对实数完备性若干定理的理解。 重点难点:重点与难点为其证明思路与方法。 教学方法:讲
-
二次函数综合题
二次函数综合题 如图所示,在直角坐标系中,A(-1,0),B(3,0),C(0,3) 1.用三种方法求出经过A B C三点的抛物线解析式2.抛物线的顶点坐标为D( ) 3.求△ABC的面积,求四边形ACDB的面
-
二次函数练习
二次函数练习
1,函数fxx2bxc,对于任意tr,均有f2xf2x则f1,f2,f4,的大小关系是_____________________
2,二次函数yax24xa3的最大值恒为负,则a的取值范围是________________------ 3,二 -
《二次函数 》教案
命题人:刘英明 审题人:曹金满 课型:新授课《二次函数 》教案学习重点:通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.学习难点:理解二次函数的概念,掌握
-
二次函数教案
二次函数教案 本资料为woRD文档,请点击下载地址下载全文下载地址20.1二次函数一、教学目标: .知识与技能: 通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模
-
《二次函数》说课稿
《二次函数》说课稿
课题:22.1 二次函数(第一节课时)
一、教材分析:
1、教材所处的地位:
二次函数是沪科版初中数学九年级(上册)第22章的内容,在此之前,学生在八年级已经学过了函数及 -
二次函数练习
练习【动动手、动动脑,让我们课堂更精彩!】 1.如图,抛物线y=x2-2x-3与x轴交A、B两点,与y轴交于D点.直线l与抛物线交于A、C两点,其中C点的横坐标为2. 填空:A点坐标为( , );B点坐标
-
二次函数(精选五篇)
配方法:用配方法解方程ax2+bx+c=0 (a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+2=- +2
方程左边成为一 -
二次函数教学内容
二次函数 考点1:二次函数的图像与性质、图象与系数的关系 1. 二次函数的定义:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。当b=c=0时,y=ax2(a≠0)叫做最简二次函数。
-
二次函数说课稿
26.1.1二次函数y=ax的图像说课稿
1. 说教材
本节内容是人民教育出版社出版的九年级《数学》下第26章第一节第二课时的内容。在此之前,学生已学习了二次函数的概念,对于函数的