专题:二次函数和不等式方程
-
函数方程不等式教学反思(推荐)
函数、方程、不等式教学反思
-----汪辉
本节课用五个环节组织教学。环节一是知识的回顾,这部分复习了函数、方程、不等式的基础知识,引入部分简单过渡,激发兴趣,为后面作铺垫。 -
一元二次函数、方程和不等式 2.2 基本不等式 2.2.1 基本不等式教案
第二章 一元二次函数、方程和不等式2.2 基本不等式(共2课时)2.2.1基本不等式(第1课时)1.了解基本不等式的代数和几何背景.(数学抽象)2.理解并掌握基本不等式及其变形.(逻辑推理)3.
-
2021-2022学年新教材高中数学 第二章 一元二次函数、方程和不等式
第二章一元二次函数、方程和不等式2.1 等式性质与不等式性质【素养目标】1.了解现实世界和日常生活中的等量关系与不等关系.(数学抽象)2.了解不等式(组)的实际背景,会用不等式(
-
《函数•方程•不等式》教学反思
《函数•方程•不等式》教学反思广州市第一一三中学 廖娟年一、教材内容的地位与作用:函数与方程、不等式在初中数学教学中有重要地位,函数是初中数学教学的重点和难点之一。
-
试讲教案初中数学二次函数方程
试讲教案(数学) 人教版初中数学教案 26.1 二次函数(1) 教学目标: (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。 (2)注重学生参与,联系实际,丰富学生的
-
二次函数
2.二次函数定义__________________________________________________二次函数(1)导学案
一.教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围 -
二次函数
?二次函数?测试一.选择题〔36分〕1、以下各式中,y是的二次函数的是()A.B.C.D.2.在同一坐标系中,作+2、-1、的图象,那么它们()A.都是关于轴对称B.顶点都在原点C.都是抛物线开口向上D.以上
-
一次函数与方程、不等式
怎样上好一次函数与方程、不等式这节课
----课堂反思
本节课安排了两个内容:一是探索一次函数与二元一次方程的关系,这是本节的重点;二是探索一次函数与不等式的关系,这是本节的 -
方程与不等式测试题
《方程与不等式》测试题(时间60分钟,满分100分)班级__________学号______姓名__________成绩________一、选择题(本题有10个小题, 每小题3分, 满分30分 ,下面每小题给出的四个选
-
二次函数综合题
二次函数综合题 如图所示,在直角坐标系中,A(-1,0),B(3,0),C(0,3) 1.用三种方法求出经过A B C三点的抛物线解析式2.抛物线的顶点坐标为D( ) 3.求△ABC的面积,求四边形ACDB的面
-
二次函数练习
二次函数练习
1,函数fxx2bxc,对于任意tr,均有f2xf2x则f1,f2,f4,的大小关系是_____________________
2,二次函数yax24xa3的最大值恒为负,则a的取值范围是________________------ 3,二 -
《二次函数 》教案
命题人:刘英明 审题人:曹金满 课型:新授课《二次函数 》教案学习重点:通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.学习难点:理解二次函数的概念,掌握
-
二次函数教案
二次函数教案 本资料为woRD文档,请点击下载地址下载全文下载地址20.1二次函数一、教学目标: .知识与技能: 通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模
-
《二次函数》说课稿
《二次函数》说课稿
课题:22.1 二次函数(第一节课时)
一、教材分析:
1、教材所处的地位:
二次函数是沪科版初中数学九年级(上册)第22章的内容,在此之前,学生在八年级已经学过了函数及 -
二次函数练习
练习【动动手、动动脑,让我们课堂更精彩!】 1.如图,抛物线y=x2-2x-3与x轴交A、B两点,与y轴交于D点.直线l与抛物线交于A、C两点,其中C点的横坐标为2. 填空:A点坐标为( , );B点坐标
-
二次函数(精选五篇)
配方法:用配方法解方程ax2+bx+c=0 (a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+2=- +2
方程左边成为一 -
二次函数教学内容
二次函数 考点1:二次函数的图像与性质、图象与系数的关系 1. 二次函数的定义:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。当b=c=0时,y=ax2(a≠0)叫做最简二次函数。
-
二次函数说课稿
26.1.1二次函数y=ax的图像说课稿
1. 说教材
本节内容是人民教育出版社出版的九年级《数学》下第26章第一节第二课时的内容。在此之前,学生已学习了二次函数的概念,对于函数的