专题:反函数的导数
-
反函数的导数、反三角函数的导数教案1解读
反函数的导数、反三角函数的导数教案1 教学目的 1.通过复习提问使学生巩固反函数的概念; 2.使学生掌握反函数求导法则及其推导方法; 3.使学生会用反函数求导公式推导并熟练掌握四
-
§2.4.3反函数
一.课题:反函数(3) 二.教学目标:1.进一步理解互为反函数的定义域、值域的对应关系,运用它解决有关问题; 2.了解特殊轴的轴对称的图象之间的函数解析式的联系。 三.教学重点:运用反函数
-
反函数教案第三课时
高中数学教案 第二章 函数(第10课时) 王新敞 课题:2.4.3 反函数(三) 教学目的: 1.在掌握反函数概念的基础上,初步会求非单调函数在各不同单调区间上的反函数,会利用反函数解决相关综
-
《反函数的概念》说课稿
《反函数的概念》说课稿 本次说课主要从五个部分进行,分别是教材分析、学情分析、教学目标分析、教学重难点分析和教学设计。 首先是教材分析: 我所使用的教材选自人教2003年
-
2014高考导数
2014高考导数汇编
bex1
(全国新课标I卷,21)设函数f(x)aelnx,曲线yf(x)在点(1,f)处的xx
切线方程为ye(x1)2
(I)求a,b;
(II)证明:f(x)1
(全国新课标II卷,21)已知函数f(x)exex2x
(I)讨论f(x -
导数证明题
题目:已知x>1,证明x>ln(1+x)。
题型:
分值:
难度:
考点:
解题思路:令f(x)=x-ln(1+x)(x>1),根据它的导数的符号可得函数f(x)在
1)=1-ln2>0,从(1,+ )上的单调性,再根据函数的单调性得到函数f -
导数总结归纳大全
志不立,天下无可成之事!
类型二:求单调区间、极值、最值
例三、设x3是函数f(x)(xaxb)e
(1) 求a与b的关系式(用a表示b)
(2) 求f(x)的单调区间
(3) 设a0,求f(x)在区间0,4上的值域23x的一个 -
反函数教学设计方案(共5篇)
反函数教学设计方案 教学目标 1.使学生了解反函数的概念,初步掌握求反函数的方法. 2.通过反函数概念的学习,培养学生分析问题,解决问题的能力及抽象概括的能力. 3.通过反函
-
用反函数法求值域
用反函数法求值域一、 反函数法
分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型
对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和 -
反函数第一课时教学设计解读
反函数第一课时教学设计 在人教版《全日制普通高级中学教科书(必修)数学》教科书中,1.4反函数的概念、性质及其应用应该用2课时完成,本文将从教材分析、教学目标分析、学情分析
-
课堂实例——反函数复习课(合集5篇)
课堂实例:反函数复习课 反函数在高中教材中起着承上启下的作用,一方面前面学习了函数相关内容,由于反函数也是函数所以通过反函数的学习可以进一步深化函数基础知识的理解,另一
-
成人高考—导数习题
2003年 (10)函数y2x3x21在x1处的导数为 (A)5 (B)2 (C)3 (D)4 2004年 (15)f(x)x33,则f= (A)27 (B)18 (C)16 2005年 (17)函数yx(x1)在x2处的导数值为(25)已知函数(fx)x4mx25,且f(2)24 (Ⅰ)求m的值
-
导数证明不等式
导数证明不等式一、当x>1时,证明不等式x>ln(x+1)f(x)=x-ln(x+1)f'(x)=1-1/(x+1)=x/(x+1)x>1,所以f'(x)>0,增函数所以x>1,f(x)>f(1)=1-ln2>0f(x)>0所以x>0时,x>ln(x+1)二、导
-
导数教学经验交流(推荐)
“整体建构”下导数教学 如果说高中数学是一座山峰,需要每个学子去攀登,那么导数无疑是阻碍在前方的悬崖峭壁之一,既充满挑战,又让许多同学望而却步。退却等于失败,而攀上峭壁更
-
导数典型题(本站推荐)
1. 已知函数f(x)alnx1(a0)
(I)若a=2,求函数f(x)在(e,f(e))处的切线方程;
1(Ⅱ)当x>0时,求证:f(x)1a(1) x2.设函数f(x)lnxx2ax(aR).(I)当a=3时,求函数f(x)的单调区间;
3(Ⅱ)若函数f(x -
导数应用一例
导数应用一例
石志群
13题:求一个正常数a,使得对于|x|≤1的所有x,都有x恒成立。 3
1333分析:x≤ +ax等价于3ax-3x+1≥0.令f(x)= 3ax-3x+1,则由对于|x|≤1的所有x,3
13都有x恒成立 -
导数应用复习
班级第小组,姓名学号高二数学导数复习题8、偶函数f(x)ax4bx3cx2dxe的图像过点P(0,1),且在x1处的切线方程为yx2,求1.求下列函数的导数:
(1)y(2x23)(x24)(2)yexxlnx
(3)y1x2
sinx
(4)y1234x -
导数的练习题
1、1) f(x)=x
xx32,则f(x)2)已知f(x)=ln2x,则f’=,[f]’=
2'(2x3)';[sin(x2x)]'25[ln(2x1)]';[(2x1)]'
2. 曲线yx
x2在点(-1,-1)处的切线方程为
3.若曲线yx2axb在点(0,b)处的