专题:空间向量立体几何教案
-
空间向量方法解立体几何教案
空间向量方法解立体几何【空间向量基本定理】例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分数x、y、z的值。 成定比2,N分PD成定比1,求满足的
-
《立体几何VS空间向量》教学反思
我这节公开课的题目是《立体几何VS空间向量》选题背景是必修2学过立体几何而选修21又学到空间向量在立体几何中的应用。学生有先入为主的观念,总想用旧方法却解体忽视新方法
-
用空间向量处理立体几何的问题
【专题】用空间向量处理立体几何的问题一、用向量处理角的问题例1在直三棱柱ABOA1B1O1中,OO14,OA4,OB3,AOB90,P是侧棱BB1上的一点,D为A1B1的中点,若OPBD,求OP与底面AOB所成角的正切
-
空间向量在立体几何中的应用
【利用空间向量证明平行、垂直问题】例. 如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。(1)证明:PA//平面EDB;(2)证明:PB⊥平面EFD;(3)求二
-
2015年高考空间向量和立体几何空间几何体知识汇总(合集5篇)
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。2. 空间向量的运算:OBOAABab;BAOAOBab;OPa(R)运算律:⑴加法交换律:abba⑵加法结合律:(ab)ca(bc)⑶数乘分配律:(ab)ab
-
2018高考一轮复习 立体几何 空间向量(共五则范文)
2017高考一轮复习空间向量 一.解答题(共12小题) 1.(2016•浙江)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3, (Ⅰ)求证:BF⊥平面ACFD; (Ⅱ)求二面角B﹣AD﹣F的
-
28.空间向量在立体几何中的应用
高三数学一轮复习材料命题:王晓于杰审题:刘臻祥2007-8-22§5.3空间向量在立体几何中的应用NO.28【基础知识梳理】1. 直线的方向向量与直线的向量方程⑴ 用向量表示直线或点在
-
空间向量在立体几何中的应用(一) 课时教案
空间向量在立体几何中的应用(一) ——求空间两条直线、直线与平面所成的角 知识与技能:引导学生探索并掌握利用空间向量求线线角、线面角的基本方法。、 过程与方法:通过对例题
-
2018届二轮数学 空间向量与立体几何 专题 专题卷(全国通用)(范文大全)
空间向量与立体几何 一、选择题 1. 已知A∈α,P∉α,=,平面α的一个法向量n=,则直线PA与平面α所成的角为 ( ) A. 30°B. 45°C. 60°D. 150° 【答案】C 【解析】设PA与平面α所
-
新课标选修2-1空间向量与立体几何检测题(
空间向量第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列命题中:①若a、b共线,则a、b所在的直线平行
-
空间向量求空间角.教案
空间向量求空间角 教学知能目标:1.理解空间向量求解空间角的一般方法; 2.能用空间向量解决空间角问题。 教学情感目标:培养学生探究新知的精神,培养学生数形结合的能力,化归的能力
-
向量空间证明
向量空间证明解题的基本方法: 1)在立体几何图形中,选择适当的点和直线方向建立空间直角坐标系 中 2)若问题中没有给出坐标计算单位,可选择合适的线段设置长度单位; 3)计算有关
-
向量空间证明
向量空间证明解题的基本方法:1)在立体几何图形中,选择适当的点和直线方向建立空间直角坐标系中2)若问题中没有给出坐标计算单位,可选择合适的线段设置长度单位;3)计算有关点的
-
空间向量复习
高中数学选修2—1空间向量 期末复习(基本知识点与典型题举例)为右手直角坐标系(立体几何中建立的均为右手系)。2、空间直角坐标系中的坐标运算:一、空间向量的线性运算:1、空间向
-
向量空间总结
向量空间总结一、知识结构图二、结构说明⑴本章主要包括向量代数和空间解析几何的基本内容.向量代数是研究空间解析几何的基础,解析几何中,直线、平面方程的建立都是由向量的
-
数学空间向量
一. 空间向量的基本概念、运算、定理1. 空间向量的基本概念由于我们所讲的向量可以自由移动,是自由向量,因此对于一个向量、两个向量都是共面的,他们的基本概念与平面向量完全
-
【教案】3.2立体几何中的向量方法
3.2.2向量法解决空间角问题 (习题课) (1)、三维目标 1.知识与能力:向量运算在几何计算中的应用.培养学生的空间想象能力和运算能力。 2.过程与方法:掌握利用向量运算解几何题的方法,
-
空间向量的应用[定稿]
1. 理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量。 2. 能用向量语言表述线线、线面、面面的垂直和平行关系。
3. 能用向量方法证明有关线、面位置关系