专题:配方法解方程练习
-
配方法讲解练习
过程
1.转化: 将此一元二次方程化为a^2;+bx+c=0的形式(即一元二次方程的一般形式)
2.移项: 常数项移到等式右边
3.系数化1: 二次项系数化为1
4.配方: 等号左右两边同时加上一次项 -
G61504用配方法解方程练习题(一)
G61504用配方法解方程练习题(一)1.用适当的数填空:①、x2+6x+=(x+)2; ②、x2-5x+=(x-)2;③、x2+ x+=(x+)2; ④、x2-9x+=(x-)22.将二次三项式2x2-3x-5进行配方,其结果为_________.3.已知4x2-ax+1可变
-
用配方法解方程的教学设计
的教学设计 新寨中学:张平英 教学内容 湘教版九年级数学上册第32—33页. 学习目标 1、通过实例理解配方法。 2、会用配方法解二次项系数为1的一元二次方程,并知道其解的基本
-
初三数学配方法练习
初三数学配方法综合练习
1、求证:无论m取什么实数时,总有m2
+4m+5是正数。2、小李家今天来了一位客人,小李问这位叔叔:“是你的年龄大,还是我爸爸的年龄大?”
这位叔叔说:“你爸爸 -
解方程练习教案
课题:解方程练习教学内容:青岛版五年级上册第四单元 教学目标: 1、能用字母或含有字母的式子表示计算公式、运算定律、数量和数量关系。 2、掌握方程的意义,掌握方程与等式的关
-
二次函数配方法练习(推荐阅读)
1.抛物线y=2x2-3x-5配方后的解析式为顶
点坐标为______.当x=______时,y有最______值是______,与x轴的交点是______,与y轴的交点是______,当x______时,y随x增大而减小,当x______时,y随x增 -
解方程应用题归类练习
列方程解应用题 分类练习类型一(简单的一步方程) 1、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。六一班收集了60个,六二班比六一班多收集15个,六二班收集了几个? 2、学
-
四年级下册解方程练习
把一个数从方程的一边移动到另一边,要改变符号(加变减,减变加,乘变除,除变乘)3x-5+2x+4=14 45-6x+9x=15 7x+18-6x+12=60 练1、39-5x=9 2x+3+16x-7=32 33-8x+7-7x=10 9x-7-6x+5=1
-
解方程练习教学设计
解方程练习教学内容:青岛版五年级上册73-74页。 教学目标: 1.通过练习,进一步理解和掌握简易方程的解法,解方程的依据(等式的性质)。并能正确解简易方程。养成自觉检验的良好习惯
-
配方法专题探究
配方法专题探究例1:填空题:1.将二次三项式x2+2x-2进行配方,其结果为2.方程x2+y2+4x-2y+5=0的解是。分析:利用非负数的性质3.已知M=x2-8x+22,N=-x2+6x-3,则M、N的大小关系为。 分析:利用减法
-
配方法习题
配方法习题一、选择题1.下列哪个不是完全平方式?A、2x2B、x2-6x+9C、25x2-10x+1D、x2+22x+1212.以配方法解3x2+4x+1=0时,我们可得下列哪一个方程式?252121A、(x+2)2=3B、(3x+ )2=、(x+2=D、(x+2
-
配方法含答案
配方法1、方程6x2=18的根是__________;已知2(x-3)2=72,则x的值是__________.2、若方程x2-6x+5=0可化为(x+m)2=k的形式,则m=__________,k=__________.3、一元二次方程x2-2x-3=0的根是_______
-
02 配方法解一元二次方程练习1
配方法解一元二次方程练习(1)( 2 )x212x150
姓名:
1.用适当的数填空:
x2
6x_____(x____)2
;x25x_____(x____)2
;
x2x_____(x____)2
;
x2
8x_____(x____)2
;
x2
2_____(x____)2
3
x;
x2 -
03 配方法解一元二次方程练习2
(2)9x8x2的值恒小于0. 配方法解一元二次方程练习
1.求x为何值时,2x2
7x2有最小值并求出最小值 ;2.求x为何值时,3x2
5x1有最大值并求出最大值。
3.用配方法证明:多项式2x4
4x2
1 -
1.2.2配方法(推荐五篇)
1.2.2配方法(1)教学案 学习目标
1、能够用配方法解二次项系数为1的一元二次方程 体验学习一、探究新知
问题1:下面两个方程同学们愿意解哪一个?,这两个方程有联系吗? 二、课堂练 -
数学学习法配方法
数学学习法——配方法
释义:在数学式变换中,根据需要把有关字母的项对照公式 (ab)2a22abb2,补上恰当的项以配成完全平方的形式,这种方法就叫做配方法,配方法的应用常见于:
(1)分解因 -
配方法的应用(精选合集)
配方法的应用
11.若把代数式x22x3化为(xm)2k的形式,其中m、
k为常数,则m+k=.
4. 用配方法将代数式a24a5变形,结果正确的是
A.(a2)21B.(a2)25C.(a2)24D.(a2)29
18. 已知二次函数y -
配方法教案[合集五篇]
一元二次方程的解法--配方 一 教学目标 1、了解什么是配方法; 2、会用配方法准确而熟练解一元二次方程; 3、理解配方法的关键、基本思想和步骤; 4、体会转化、类比、降次的思想