专题:苏教版高中数学选修
-
高中数学选修4-5完整知识点
高中数学选修4--5知识点 ①(对称性)ba②(传递性)ab,bcac③(可加性)abacbc(同向可加性)ab,cdacbd(异向可减性)ab,cdacbd④(可积性)ab,c0acbcab,c0acbc⑤(同向正数可乘性)ab0,cd0acbd (异向正
-
高中数学选修教材目录
高中数学选修教材目录1-1第一章常用逻辑语 1.1 命题及其关系 1.2 充分条件与必要条件 1.3 简单的逻辑联结词 1.4 全称量词与存在量词 小结第二章 圆锥曲线与方程2.1 椭圆探
-
高中数学选修2-2知识点
高中数学选修2----2知识点
第一章 导数及其应用 一.导数概念的引入limx0f(x0x)f(x0) x
1. 导数的物理意义:瞬时速率。导数的几何意义: 切线斜率
二.导数的计算
f(x)f(x)g(x)f(x -
高中数学选修1-2知识点归纳
推理与证明一.推理: 联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。 ①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的
-
高中数学选修2-2知识点[精选]
数学选修2-2第一章推理与证明知识点必记1.归纳推理的定义是什么?答:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。 .......归纳推理是由部分到整体,由个别到一般的推
-
苏教选修1-1.1.3量词教案(精选多篇)
课题:§1.3.1 量词 教学目标 1.通过生活和数学中的丰富实例,理解全称量词与存在量词的意义; 2.能准确地利用全称量词与存在量词叙述数学内容。 教学重点及难点 理解全称量词与存
-
高中数学 1.2.2充要条件教案 新人教A版选修2-1
福建省漳州市芗城中学高中数学 1.2.2充要条件教案 新人教A版选修2-1 (一)教学目标1.知识与技能目标: (1) 正确理解充要条件的定义,了解充分而不必要条件, 必要而不充分条件, 既
-
高中数学 数学归纳法教案 新人教A版选修4-5
第一课时4.1数学归纳法教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题
-
高中数学1.1.2充分条件和必要条件教学案选修1-1(五篇材料)
教学目标: 1.巩固理解充分条件与必要条件的意义,进一步掌握判断的方法. 2.会求命题的充要条件以及充要条件的证明. 教学重点:从不同角度来进行充分条件、必要条件和充要条件的判断.
-
高中数学选修2-2知识点总结
导数及其应用 一.导数概念的引入 数学选修2-2知识点总结 1. 导数的物理意义:瞬时速率。一般的,函数yf(x)在xx0处的瞬时变化率是limf(x0x)f(x0)x, x0我们称它为函数yf(x)在xx0处
-
人教版高中数学必修选修目录
人教版高中数学必修选修目录 必修1 第一章 集合与函数概念 1.1 集合1.2 函数及其表示1.3 函数的基本性质 第二章 基本初等函数(Ⅰ) 2.1 指数函数2.2 对数函数2.3 幂函数 第
-
高中数学选修1-2试题及答案
高二数学(文)竞赛试题一、选择题:本大题共14小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项是符合要求的.1.若复数z3i,则z在复平面内对应的点位于A.第一象限B.第二象限C.第
-
高中数学选修1-2知识点(精选5篇)
(文科)高中数学选修1-2知识点第一章 统计案例 1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:ybxa(最小二乘法)nxiyinxyi
-
高中数学《1.2.1排列》教案4 新人教A版选修2-3
高中新课程数学(新课标人教A版)选修2-3《1.2.1排列》
教案4
例5.(1)7位同学站成一排,共有多少种不同的排法?
解:问题可以看作:7个元素的全排列A77=5040.
(2)7位同学站成两排(前3后4),共有多少 -
高中数学:2.2.1《综合法和分析法》教案(新人教A版选修2-2)
数学:2.2.1《综合法和分析法》教案教学目标:(一)知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。(二)过程与方
-
高中数学 1.4计数应用题教学案 理苏教版选修2-3[精选]
1.4 计数应用题(理科) 教学目标: 利用排列组合知识以及两个基本原理解决较综合的计数应用题,提高应用意识和分析解决问题的能力. 教学重点: 理解排列和组合. 教学难点: 能运用排列
-
高中数学《数学归纳法》学案1 新人教A版选修2-2
数学归纳法的典型例题分析例1 用数学归纳法证明等式时所有自然数 都成立。证明 (1)当(2)假设当时,左式,右式时等式成立,,等式成立。即则则时,等式也成立。均成立。时等式成立时,注意分
-
比较法证明不等式 高中数学选修2-3
1.1&1.2比较法证明不等式陈娇【教学目标】1. 知识与技能掌握两个实数的大小与它们的差值的等价关系以及理解并掌握比较法的一般步骤。2. 过程与方法掌握运用比较法证明一些