专题:三角形的重心定理
-
三角形的重心定理及其证明
三角形的重心定理及其证明积石中学王有华同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好.
-
三角形重心
重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。
已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点 -
三角形公式定理
第三章 三角形公式定理第三章 三角形1 三角形的有关概念和性质1.1三角形的内角和在同一平面内,由一些不在同一条直线上的线段首位顺次相接所围成的封闭图形叫做多边形.组成
-
三角形垂心定理
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG -
三角形射影定理
几何证明射影就是正投影,从一点到过顶点垂线垂线的垂足,叫做这点在这条直线上的正投影。一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影,即
-
向量与三角形的重心
向量与三角形的重心例1 已知A,B,C是不共线的三点,G是△ABC内一点,若GAGBGC0.求证:G是△ABC的重心.证明:如图1所示,因为GAGBGC0,所以GA(GBGC).以GB,GC为邻边作平行四边形BGCD,则有GDGBGC,所
-
三角形内角平分线定理
三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。 已知:如图8-4甲所示,AD是△ABC的内角∠BAC的平分线。
求证: BA/AC=BD/DC;
思路1:过C作角平分线AD的 -
三角形性质和判定定理
等腰三角形:
定义:有两条边相等的三角形是等腰三角形。在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。 性质:
1.等腰三角形的两 -
与三角形有关的定理、
与三角形有关的定理:
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐 -
三角形内角和定理教案
9.2三角形内角和 教学案例 学校:野鸡坨镇丁庄子初级中学 学科:数 学 姓名:田 明 时间:2018年5月 9.2 三角形内角和定理 教学案例 一、地位和作用 《三角形内角和》是冀教版义
-
三角形内角和定理 说课稿(大全)
《三角形内角和定理》说课稿 内丘县内丘镇中学 乔素霞 尊敬的各位评委、各位老师,大家好: 我是内丘县内丘镇中学的教师乔素霞,今天我说课的内容是《三角形内角和定理》。下面我
-
探索三角形内角和定理(五篇材料)
探索三角形内角和定理 教学目标: 知识目标: (1)理解和验证“三角形的内角和等于180度”。 (2)运用三角形内角和结论解决问题。 能力目标: (1)通过学生猜、测、拼、折、观察等活动,培养
-
八年级数学三角形内角和定理
11.4《三角形内角和定理》导学案(1) 主备:崔友丽 王维玉 审核:崔兴泉 课本内容:p126—p127 课前准备:刻度尺 、三角板 学习目标: (1) 知识与技能 : 掌握“三角形内角和定理”的证明过
-
三角形的内角和定理教案
三角形的内角和定理 旧市学校 李姿慧 教学目标 1.知识与技能 : ⑴掌握三角形内角和定理的证明。 ⑵初步体会添加辅助线证题,培养学生观察、猜想和论证的能力 2.过程与方法 :
-
《三角形内角和定理》教学设计(范文大全)
《三角形内角和定理》教学设计 一、教材分析(一)教学内容的地位 本节课是在研究了三角形的有关概念和学生在对“三角形的内角和等于1800”有感性认识的基础上,对该定理进行推
-
《三角形内角和定理》教学设计
人教版七年级下册7.2.1《三角形的内角》教学设计说明 淄博市高青县实验中学邢春林 人教版七年级下册7.2.1《三角形的内角》教学设计说明 淄博市高青县实验中学邢春林 一、教
-
三角形内角和定理教学反思
三角形内角和定理(1)教学反思 “三角形的内角和定理”我们在初一的时候就已经学会运用了,但是这个定理到底如何证明呢?这时,本节的目标就已经明确下来了。证明的过程中,通过课前
-
三角形外心、重心、垂心的向量形式
三角形外心、重心、垂心的向量形式已知△ABC,P为平面上的点,则(1)P为外心(2)P为重心(3)P为垂心证明 (1)如P为△ABC的外心(图1),则 PA=PB=PC,(2)如P为△ABC的重心,如图2,延长AP至D,