专题:数列不等式综合应用

  • 放缩法(不等式、数列综合应用)

    时间:2019-05-13 21:42:50 作者:会员上传

    “放缩法”证明不等式的基本策略近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能

  • (教案)数列综合应用

    时间:2019-05-12 23:46:31 作者:会员上传

    专题三:数列的综合应用 备课人:陈燕东 时间: 备课组长[考点分析] 高考关于数列方面的命题主要有以下三个方面; (1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项

  • 数列与不等式的交汇应用(精选5篇)

    时间:2019-05-14 13:36:48 作者:会员上传

    数列与不等式的交汇应用 数列与不等式的交汇问题,既有函数的思想方法,也有数列特定的思想方法,更有不等式求解、证明的方法和技巧,由于知识覆盖面广、综合性强而成为高考命题的

  • 数列综合应用作业 (5篇模版)

    时间:2019-05-13 09:02:01 作者:会员上传

    数列求和及数列的综合应用课时作业
    一、选择题
    1.数列{an}的前n项和为Sn,若a1=1,an+1=3Sn(n≥1),则a6= A.3×44B.3×44+1C.44
    D.44+1
    2.(2013·昆明模拟)已知数列{a2ann为正奇数,
    n}满足a1

  • 数列不等式题[全文5篇]

    时间:2019-05-13 09:01:53 作者:会员上传

    数列不等式综合题示例例1 设等比数列an的公比为q,前n项和Sn0(n1,2,) (Ⅰ)求q的取值范围; (Ⅱ)设bn3an2an1,记bn的前n项和为Tn,试比较Sn与Tn2
    41n12例2设数列an的前n项的和Snan22•,

  • 数列不等式的证明

    时间:2019-05-13 09:02:15 作者:会员上传

    数列和式不等式的证明策略
    罗红波洪湖二中高三(九)班周二第三节(11月13日)
    数列和式不等式的证明经常在试卷压轴题中出现,在思维能力和方法上要求很高,难度很大,往往让人束手无策,其

  • 导数与数列不等式的综合证明问题

    时间:2019-05-14 15:49:32 作者:会员上传

    导数与数列不等式的综合证明问题 典例:(2017全国卷3,21)已知函数fxx1alnx 。 (1)若fx0 ,求a的值; (2)设m为整数,且对于任意正整数n1111 11m ,求m的最小值。2n222分析:(1)由原函数与导函

  • 高二数学不等式综合应用测试题

    时间:2019-05-13 21:42:09 作者:会员上传

    1. 函数ytogx512x3的定义域为()A. 5,B. 5,C. ,35,D. ,3 2. 实数a、b满足b<a<0,则下列不等式①1a1b1x3>②a<b③221a>1b④a>b 其中正确的个数为()A. 3个B. 2个C. 1个D. 0个 3. 不等式>1的

  • 放缩法证明数列不等式

    时间:2019-05-14 16:01:00 作者:会员上传

    放缩法证明数列不等式 基础知识回顾: 放缩的技巧与方法: (1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用

  • 放缩法证明数列不等式

    时间:2019-05-13 09:01:52 作者:会员上传

    放缩法证明不等式1、设数列an的前n项的和Sn43an132nn123(n1,2,3,)n(Ⅰ)求首项a1与通项an;(Ⅱ)设Tnan42nn2Sn(n1,2,3,),证明:Tii132解:易求SnTn(其中n为正整数)23nn432nann132n1434n23n

  • 数列----利用函数证明数列不等式

    时间:2019-05-13 09:02:12 作者:会员上传

    数列
    1 已知数列{an}的前n项和为Sn,且a2anS2Sn对一切正整数n都成立。 (Ⅰ)求a1,a2的值; (Ⅱ)设a10,数列{lg大值。2已知数列{an}的前n项和Sn
    (1)确定常数k,求an;
    (2)求数列{3在等差数列an中

  • 探索数列不等式的证明

    时间:2019-05-13 09:02:35 作者:会员上传

    探索数列中不等式的证明教学目标:双基:加深学生对放缩法、二项式定理法、数学归纳法等方法的理解,并能运用这些方法证明数列不等式。能力:在问题的解决过程中,培养学生自主探索,归

  • 数列与不等式证明专题五篇

    时间:2019-05-13 09:01:53 作者:会员上传

    数列与不等式证明专题复习建议:1.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条

  • 数列不等式推理与证明

    时间:2019-05-13 09:02:26 作者:会员上传

    2012年数学一轮复习精品试题第六、七模块 数列、不等式、推理与证明一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等比数

  • 构造函数证明数列不等式

    时间:2019-05-15 14:10:27 作者:会员上传

    构造函数证明数列不等式 ln2ln3ln4ln3n5n6n3n(nN*). 例1.求证:23436ln2ln3lnn2n2n1例2.求证:(1)2,(n2) 2(n1)23n例3.求证:例4.求证:(1练习:1求证:(112)(123)[1n(n1)]e2.证明:3

  • 第5课时数列的综合应用

    时间:2019-05-13 09:02:30 作者:会员上传

    课题:数列的综合应用教学目标:熟练掌握等差(比)数列的基本公式和一些重要性质,并能灵活运用性质解决有关的问题,培养对知识的转化和应用能力.教学重点:等差(比)数列的性质的应用.(一) 主

  • 均值不等式及其应用

    时间:2019-05-13 21:41:39 作者:会员上传

    教师寄语:一切的方法都要落实到动手实践中高三一轮复习数学学案均值不等式及其应用一.考纲要求及重难点要求:1.了解均值不等式的证明过程.2.会用均值不等式解决简单的最大(小)值

  • 均值不等式应用

    时间:2019-05-13 21:42:36 作者:会员上传

    均值不等式应用一.均值不等式22ab1. (1)若a,bR,则ab2ab(2)若a,bR,则abab时取“=”) 2222. (1)若a,bR*,则ab(2)若a,bR*,则ab2ab(当且仅当ab时取“=”) 2ab(当且仅当ab时取“=”(3)若a