专题:数学必修4平面向量
-
高一数学培优宝典-高考知识练习:平面向量(必修4)
1.(2015·课标Ⅰ,7,易)设D为△ABC所在平面内一点,=3,则( )A.=-+B.=-C.=+D.=-【答案】 A 如图所示,在△ABC中,=-.又∵=3,∴==-,∴=+=-+.2.(2015·安徽,8,中)△ABC是边长为2的等边三角形,已知向量a,b满足=2a,=2a
-
专题4平面向量与不等式结合
专题4平面向量与不等式结合考点动向:向量与不等式的交汇是当今高考命题的一个热点.自从新教材实施以来,在高考中,不时考查平面向量与不等式有关知识的结合。这些题实际上是以
-
2014高考数学复习:平面向量
高考数学内部交流资料【1--4】2014高考数学复习:平面向量一选择题(每题5分,共50分)1. 向量﹒化简后等于( )A.AMB.0C.0D.AC2. 下面给出的关系式中,正确的个数是( )10·=0○2 ·=·○3○4
-
数学平面向量课后题
数学的必修四便会学习到平面向量,这和物理必修一的内容也有一定的相关性,所以,我们更应该学好这一知识点。分享了数学平面向量的课后题及答案,一起来看看吧!一、选择题1.已知向量O
-
高中数学必修4平面向量复习5正弦定理余弦定理
5.5正弦定理、余弦定理要点透视:1.正弦定理有以下几种变形,解题时要灵活运用其变形公式.(1)a=2RsinA,b=2RsinB,c=2RsinC;abc(2)sinA=,sinB=,sinC=: 2R2R2R(3)sinA:sinB:sinC=a:b:c.可以用来判断三角形的形
-
平面向量复习题
平面 向 量向量思想方法和平面向量问题是新考试大纲考查的重要部分,是新高考的热点问题。题型多为选择或填空题,数量为1-2题,均属容易题,但是向量作为中学数学中的一个重要工具
-
高中数学必修4平面向量知识点与典型例题总结(理).
平面向量 【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a 。 2.向量的模:向量的大小(或长度,记作:||AB 或||a 。 3.单位向
-
高中数学必修4 第二章课例:平面向量的应用举例
金太阳新课标资源网wx.jtyjy.com回味平面向量的章节导言——课例:平面向量的应用举例 1 说明[1]《普通高中数学课程标准(实验)》指出:“高中数学课程是以模块和专题的形式呈现的.
-
平面向量说课稿(精选5篇)
平面向量说课稿 我说课的内容是《平面向量的实际背景及基本概念》的教学,所用的教材是人民教育出版社出版的普通高中课程标准实验教科书数学必修四,教学内容为第74页至76页.
-
平面向量概念教案(范文大全)
平面向量概念教案 一.课题:平面向量概念 二、教学目标 1、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。 2、让学生经历类比方法
-
平面向量教案(精选五篇)
平面向量教案 课 件www.xiexiebang.com二、复习要求 、向量的概念; 2、向量的线性运算:即向量的加减法,实数与向量的乘积,两个向量的数量积等的定义,运算律; 3、向量运算的
-
平面向量的应用
平面向量的应用平面向量是一个解决数学问题的很好工具,它具有良好的运算和清晰的几何意义。在数学的各个分支和相关学科中有着广泛的应用。下面举例说明。一、用向量证明平面
-
平面向量教案(精选5篇)
平面向量的综合应用 执教人: 执教人:易燕子
考纲要求: “从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使 考纲要求:
对数学基础知识的考查达到必要的深 -
高中数学 第2章平面向量 2.3 向量的坐标表示学案苏教版必修4[范文]
2.3向量的坐标表示 2.3.1平面向量基本定理 1.A 设向量m2a3b,n4a2b, p3a2b,试用m,n表示p,则p=__ 2.A 在ABC中,ABc,ACb,若点D满足BD2DC,则AD________ 3.B 向量a,b,c在正方形网格中的位置
-
高中数学必修4人教A教案第二章平面向量复习
第二章平面向量复习课(一) 一、教学目标 1. 理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。 2. 了解平面向量基本定理. 3. 向量的加法的
-
高一数学-54平面向量的坐标运算
5.4平面向量的坐标运算
知识要点精讲
知识点1平面向量的坐标表示
在直角坐标系内,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知, -
07--12年浙江省高考数学平面向量题
2010(16)已知平面向量a,(a0,a)满足1,且a与a的夹角为120°则a
。2009(7)设向量a,b满足︱a︱=3,︱b︱=4,ab=0.以a,b,a-b的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为
(A)3(B -
北师大版高中数学(必修4)2.6《平面向量数量积的坐标表示》教案
平面向量数量积的坐标表示教案1 教学目标 1.正确理解掌握两个向量数量积的坐标表示方法,能通过两个向量的坐标求出这两个向量的数量积. 2.掌握两个向量垂直的坐标条件,能运用这