专题:数学三角函数初中
-
初中数学三角函数综合练习题
三角函数综合练习题 一.选择题(共10小题) 1.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是 A.2 B. C. D. 2.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=
-
数学三角函数
1.(2010·天津高考理科·T7)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2b2,sinCB,则A= ()(A)300(B)600(C)1200(D)15002.(2010·北京高考文科·T7)某班设计了一个八边形的班徽(如图),它由腰长为1,顶
-
初中三角函数知识点提纲[五篇范例]
初中数学,让学生头痛的很大一部分就是三角函数!很多同学对与三角函数中正弦、余弦、正切、余切中的公式容易混淆,接下来小编为大家收集了初中三角函数知识点提纲,供大家参考学
-
初三数学三角函数教案及练习解读
中考数学 锐角三角函数 专题复习1、锐角三角函数 锐角角A 的正弦(sin ,余弦(cos 和正切(tan 都叫做角A 的锐角三角函数。 正弦(sin 等于对边比斜边,余弦(cos 等于邻边比斜
-
高一数学三角函数的诱导公式(最终定稿)
诱导公式(3)
一、学习目标
1.能运用诱导公式进行三角函数式的求值、化简以及简单三角恒等式的证明. 2. 能综合运用诱导公式和同角三角函数基本关系式解决求值问题 二、重点与难 -
2014年中考数学真题三角函数汇总
2014年中考数学三角函数1、(2014•黄冈)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船
-
人教版初中数学九年级下册第二十八章《锐角三角函数》测试题(含答案)
第二十八章《锐角三角函数》测试题一、单选题1.tan45°的值为( )A.2B.﹣2C.1D.﹣12.在中,,则的值是A.B.2C.D.3.如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,点M为边AB上的一动点,点N为边A
-
三角函数测验题
离婚协议书范本
男方:叶镇强,男,汉族,1981年8月9日生,住河源市紫金县紫城镇金富大楼B1501,身份证号码:***516
女方:黄凤华,女,汉族,1985年1月11日生,住河源市紫金县紫城镇金 -
三角函数专题学案(精选合集)
三角函数专题学案(2012)考纲要求:1、任意角的概念、弧度制(1)了解任意角的概念和弧度制的概念;(2)能进行弧度与角度的互化.2、三角函数(1)理解任意角的三角函数(正弦、余弦、正切)的定义
-
三角函数教案设计
第四章 三角函数总 第1教时 4.1-1角的概念的推广(1) 教学目的: 推广叫的概念,引入正角、负角、零角;象限角、坐标上的角的概念;终边相同角的表示方法。 让学生掌握用“旋转”定义
-
三角函数教案
三角函数 1教学目标 ⑴: 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形 ⑵: 通过综合运用勾股定理,直角三角形
-
余弦定理 三角函数(模版)
对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质——a^2 = b^2 + c^22·a·c·cosBc^2 = a^2
-
三角函数口诀
二、《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割中心记上数字1,连结顶点三角 -
三角函数详解
2008.(本小题满分12分)已知函数f(x)2sinx4cosx42x4.(Ⅰ)求函数f(x)的最小正周期及最值;π,判断函数g(x)的奇偶性,并说明理由. 3x22sin2(Ⅱ)令g(x)fx解:(Ⅰ)f(x)sinx4)sinx2xπ2sin223x. f(x)
-
2011高考题--三角函数
北京15.(本小题共13分)已知函数f(x)4cosxsin(x(Ⅰ)求f(x)的最小正周期:,上的最大值和最小值。 646)1。(Ⅱ)求f(x)在区间全国5.设函数f(x)cosx(>0),将yf(x)的图像向右平移的图像与原图像
-
高一数学必修4三角函数教案j(本站推荐)
1.6三角函数模型的简单应用 学习目标: 1、通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法; 2、体验实际问题抽象为三角函数模型问题的过程; 3、体会三
-
初中数学
多悦初中数学“课堂练习有效性设计”
专题研究报告
徐亢红李林
课堂教学是促进学生成长和实现教师自身发展的主要途径。有效的课堂练习是学生巩固所学知识、运用知识、训练 -
初中数学
云南省特岗教师招聘考试仿真试卷二(初中数学) 部分试题 (满分:100分考试时间:150分钟) 专业基础知识部分 得分评卷人 一、选择题(本大题共10小题,每小题3分,共30分) 1.下列计算中