专题:数学通项公式
-
数列通项公式之数学归纳法
数列通项公式之数学归纳法 1.用数学归纳法证明:2. 已知数列{an}满足a1=a,an+1=1111n++++=(nN*) 2446682n(2n+2)4(n+1)1 2an(1)求a2,a3,a4; (2)推测通项an的表达式,并用数学归纳法加
-
数学分层作业(等比数列通项公式2)(★)
紧扣教材 分层作业夯实基础步步为营
数学分层作业(等比数列通项公式2)
知 识: 等比中项、性质.方 法:明晰特征,掌握方法.
(基本训练1—5;知识应用6—7;灵活应用8—9)组别学号 姓名 -
等比数列的通项公式(教案)
等比数列的通项公式(教案) 一、教学目标 1、 掌握等比数列的通项公式,并能够用公式解决一些相关问题。 2、 掌握由等比数列的通项公式推导出的相关结论。 二、教学重点、难点
-
《数列通项公式》教学设计
《数列通项公式》教学设计 【授课内容】数列通项公式 【授课教师】陈鹏 【授课班级】高三6班 【授课时间】2009年10月20日晚自习【教学目标】 一、知识目标: 1. 解决形如an+
-
《数列通项公式》教学反思
《数列通项公式》教学反思 数列是高考中必考的内容之一,而研究数列,要通项先行。本节课只是复习归纳了几种常见的求数列通项公式的方法,可以看到,求数列(特别是以递推关系式给出
-
关于递推数列通项公式的测试题
关于递推数列通项公式的测试题
2Sn2例2.数列{an}中a11,an(n≥2),求数列{an}的通项an。 2Sn1例3.⑴ 数列{an}满足a11且an1an3n,求数列{an}的通项公式an;⑵ 数列{an}满足a11且an1an(3n -
高中数学数列求通项公式习题
补课习题(四)的一个通项公式是 ,A、anB、anC、anD、an2.已知等差数列an的通项公式为an32n , 则它的公差为A 、2B 、3C、 2D、33.在等比数列{an}中, a116,a48,则a7A、4B、4C、2D、
-
求数列的通项公式练习题
求数列的通项公式练习题
一、累加法
例 已知数列{an}满足an1an2n1,,求数列{an}的通项公式。练习:已知数列{an}满足an1an23n1,a13,求数列{an}的通项公式。二、累乘法
例 已知数 -
数列通项公式的求法简单总结
艳阳教育高中数学辅导 数列通项公式的求法类型1 递推公式为an1anf(n)
解法:把原递推公式转化为an1anf(n),利用累加法(逐差相加法)求解。 例1. 已知数列an满足a1解:由条件知:an1a -
数列、数列的通项公式教案(精选5篇)
目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。重点:1数列的概念。按一定次序排列的一列数
-
等差数列的定义与通项公式教案(模版)
等差数列的定义与通项公式 一.教学目标 (1)知识与技能: 正确理解等差数列的概念;初步掌握等差数列的通项公式,并会简单应用。(2)过程与方法 通过对等差数列概念和通项公式的探究,培养
-
数列通项公式的求法教案(推荐5篇)
课题:数列通项公式的求法 课题类型:高三第一轮复习课授课教师:孙海明 1、知识目标:使学生掌握数列通项公式的基本求法:(1)利用公式求通项(2)累加法求通项(3)累乘法求通项,并能灵活地运用
-
等比数列的概念和通项公式(教学设计)
《等比数列》(第1课时)教学设计 授课地点:武威八中 授课时间:2015年4月22日 授课人:武威六中杨志隆 一、教学目标 知识与技能 1.理解等比数列的概念; 2.掌握等比数列的通项公式; 3.
-
几类递推数列的通项公式的求解策略
http://jsbpzx.net.cn/ 蒲中资源网 几类递推数列的通项公式的求解策略 已知递推数列求通项公式,是数列中一类非常重要的题型,也是高考的热点之一.数列的递推公式千变万化,由递推
-
根据数列递推公式求其通项公式方法总结
根据数列递推公式求其通项公式方法总结 已知数列的递推公式,求取其通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,构造
-
2.4.1等比数列的概念及通项公式导学案
白城实验高中 高二数学 必修5编号: 6编制人:张晶审批人: 冯淑君包科领导: 张晶2012年日班级学生姓名评价 数列§2.4.1等比数列的概念及通项公式【学习目标】1. 理解等比数列的概
-
数列通项公式与前n项和公式关系教案(推荐5篇)
数列通项公式与前n项和公式关系教案 教学目标 1.了解数列的通项公式an与前n项和公式Sn的关系. 2.能通过前n项和公式Sn求出数列的通项公式an. 3.培养学生辩证统一的观点. 教学重点
-
斐波那契数列通项公式的证明
斐波那契数列:1、1、2、3、5、8、13、21、34……它的通项公式为:an1[(15)n(1)n]1解得证明:令anan1(an1an2)(n3)则有1
121或
121故有
(1)
an
1151111an1(an1an2) 或 (2) ana