专题:25二次函数练习题
-
二次函数练习题
§3.4二次函数复习目标1.二次函数的定义:形如〔a≠0,a,b,c为常数〕的函数为二次函数.2.二次函数的图象及性质:〔1〕二次函数的图象是一条抛物线.顶点为〔-,〕,对称轴x=-;当a>0时,抛物线开口
-
二次函数练习题及答案
二次函数练习题 一、选择题: 1.下列关系式中,属于二次函数的是(x为自变量) A. B. C. D. 2. 函数y=x2-2x+3的图象的顶点坐标是 A. (1,-4)B.(-1,2)C. (1,2)D.(0,3) 23. 抛物线y
-
二次函数练习题6[合集五篇]
硕博教育·启科新空间九下数学 《二次函数》二次函数练习题(6) 一、顶点坐标: (1)二次函数(3)二次函数的图象的顶点坐标是 。(2)二次函数的图象的顶点坐标是 。(4)二次函数的图象的顶点
-
二次函数基础课时练习题(精选,类型)
一、已知函数y3x229。 (1)确定下列抛物线的开口方向、对称轴和顶点坐标; (2)当x= 时,抛物线有最 值,是 。 (3)当x 时,y随x的增大而增大;当x 时,y随x的增大而减小。 (4)求出该抛物线与x轴
-
求二次函数的函数关系式练习题
求二次函数的函数关系式3o-13yx1.:函数的图象如图:那么函数解析式为〔〕〔A〕〔B〕〔C〕〔D〕DYCXBOA2.如图:△ABC是边长为4的等边三角形,AB在X轴上,点C在第一象限,AC与Y轴交于点D,点
-
二次函数
2.二次函数定义__________________________________________________二次函数(1)导学案
一.教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围 -
二次函数
?二次函数?测试一.选择题〔36分〕1、以下各式中,y是的二次函数的是()A.B.C.D.2.在同一坐标系中,作+2、-1、的图象,那么它们()A.都是关于轴对称B.顶点都在原点C.都是抛物线开口向上D.以上
-
中考数学复习二次函数练习题及答案
基础达标验收卷一、选择题:1.(2003•大连)抛物线y=(x-2)2+3的对称轴是.A.直线x=-3B.直线x=3C.直线x=-2D.直线x=22.(2004•重庆)二次函数y=ax2+bx+c的图象如图,则点M(b,)在
-
二次函数综合题
二次函数综合题 如图所示,在直角坐标系中,A(-1,0),B(3,0),C(0,3) 1.用三种方法求出经过A B C三点的抛物线解析式2.抛物线的顶点坐标为D( ) 3.求△ABC的面积,求四边形ACDB的面
-
二次函数练习
二次函数练习
1,函数fxx2bxc,对于任意tr,均有f2xf2x则f1,f2,f4,的大小关系是_____________________
2,二次函数yax24xa3的最大值恒为负,则a的取值范围是________________------ 3,二 -
《二次函数 》教案
命题人:刘英明 审题人:曹金满 课型:新授课《二次函数 》教案学习重点:通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.学习难点:理解二次函数的概念,掌握
-
二次函数教案
二次函数教案 本资料为woRD文档,请点击下载地址下载全文下载地址20.1二次函数一、教学目标: .知识与技能: 通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模
-
《二次函数》说课稿
《二次函数》说课稿
课题:22.1 二次函数(第一节课时)
一、教材分析:
1、教材所处的地位:
二次函数是沪科版初中数学九年级(上册)第22章的内容,在此之前,学生在八年级已经学过了函数及 -
二次函数练习
练习【动动手、动动脑,让我们课堂更精彩!】 1.如图,抛物线y=x2-2x-3与x轴交A、B两点,与y轴交于D点.直线l与抛物线交于A、C两点,其中C点的横坐标为2. 填空:A点坐标为( , );B点坐标
-
二次函数(精选五篇)
配方法:用配方法解方程ax2+bx+c=0 (a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+2=- +2
方程左边成为一 -
二次函数教学内容
二次函数 考点1:二次函数的图像与性质、图象与系数的关系 1. 二次函数的定义:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。当b=c=0时,y=ax2(a≠0)叫做最简二次函数。
-
二次函数说课稿
26.1.1二次函数y=ax的图像说课稿
1. 说教材
本节内容是人民教育出版社出版的九年级《数学》下第26章第一节第二课时的内容。在此之前,学生已学习了二次函数的概念,对于函数的 -
二次函数反思
二次函数反思贾翠颖
二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为