专题:初三数学试题二次函数
-
初三尖子生二次函数综合题
1、24.已知:如图,在平面直角坐标系xOy中,抛物线yax2(1xc经过A(2,0),B(1,n) ,C(0,2)三点.(1)求抛物线的解析式;(2)求线段BC的长;(3)求OAB的度数.2、23.已知抛物线yx2bx1的顶点在x轴上,且与y轴交于A
-
二次函数
?二次函数?测试一.选择题〔36分〕1、以下各式中,y是的二次函数的是()A.B.C.D.2.在同一坐标系中,作+2、-1、的图象,那么它们()A.都是关于轴对称B.顶点都在原点C.都是抛物线开口向上D.以上
-
二次函数
2.二次函数定义__________________________________________________二次函数(1)导学案
一.教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围 -
初三数学复习教案(二次函数)
用人要看他的忠诚度和可靠程度、归依企业的程度,希望能够跟企业结合一起的意向有多少,如果这三样东西都是对的,我们企业会给他非常大的机会去发展。 初三复习教案 教学内容:二次
-
初三复习二次函数教案(九)
(10)初三复习二次函数教案 教学目的: 1.掌握二次函数式的应用,理解并掌握二次函数 的 应用。 2、体会并理解掌握数形结合思想在解题中的作用 ; 教学分析: 重点:理解并掌握二次
-
初三数学二次函数单元测试题及答案
二次函数单元测评 (试时间:60分钟,满分:100分) 一、选择题(每题3分,共30分) 1.下列关系式中,属于二次函数的是(x为自变量) A. B. C. D. 2. 函数y=x2-2x+3的图象的顶点坐标是
-
初三上册数学“二次函数”教学设计
初三上册数学“二次函数”教学设计 教学任务分析 教学目标: 知识技能:通过探究实际问题与二次函数关系,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法. 数学思考:1.通过研
-
二次函数综合题
二次函数综合题 如图所示,在直角坐标系中,A(-1,0),B(3,0),C(0,3) 1.用三种方法求出经过A B C三点的抛物线解析式2.抛物线的顶点坐标为D( ) 3.求△ABC的面积,求四边形ACDB的面
-
二次函数练习
二次函数练习
1,函数fxx2bxc,对于任意tr,均有f2xf2x则f1,f2,f4,的大小关系是_____________________
2,二次函数yax24xa3的最大值恒为负,则a的取值范围是________________------ 3,二 -
《二次函数 》教案
命题人:刘英明 审题人:曹金满 课型:新授课《二次函数 》教案学习重点:通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.学习难点:理解二次函数的概念,掌握
-
二次函数教案
二次函数教案 本资料为woRD文档,请点击下载地址下载全文下载地址20.1二次函数一、教学目标: .知识与技能: 通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模
-
《二次函数》说课稿
《二次函数》说课稿
课题:22.1 二次函数(第一节课时)
一、教材分析:
1、教材所处的地位:
二次函数是沪科版初中数学九年级(上册)第22章的内容,在此之前,学生在八年级已经学过了函数及 -
二次函数练习
练习【动动手、动动脑,让我们课堂更精彩!】 1.如图,抛物线y=x2-2x-3与x轴交A、B两点,与y轴交于D点.直线l与抛物线交于A、C两点,其中C点的横坐标为2. 填空:A点坐标为( , );B点坐标
-
二次函数(精选五篇)
配方法:用配方法解方程ax2+bx+c=0 (a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+2=- +2
方程左边成为一 -
二次函数复习
二次函数复习(1)教学反思
在二次函数复习这节课中,围绕(1)二次函数的定义(2)二次函数的图像、性质与a、b、c的关系(3)二次函数解析式的求法(4)数形结合这四个知识点进行练习。 下面我要 -
05二次函数
05二次函数
(3)(2011重庆文)曲线yx23x2在点(1,2)处的切线方程为A
(A)y3x1(B) y3x5
(C) y3x5(D) y2x -
二次函数(三)
26.1二次函数〔三〕一、双基整合:1.抛物线y=20-x2可以看作抛物线y=______沿y轴向______平移_____个单位得到的.2.抛物线y=-3x2上两点A〔x,-27〕,B〔2,y〕,那么x=_______,y=_______.3.抛物
-
二次函数1
第二章二次函数一、选择题〔共30分〕1.在以下关系式中,y是x的二次函数的关系式是A.2xy+x2=1B.y2-ax+2=0C.y+x2-2=0D.x2-y2+4=02.设等边三角形的边长为x(x>0〕,面积为y,那么y