专题:等比数列求和证明
-
《等比数列求和》教案
等比数列的前n项和(第一课时教案) 一、教材分析 1.从在教材中的地位与作用来看 《等比数列的前n项和》是数列这一章中的一个重要内容,从教材的编写顺序上来看,等比数列的前n项和
-
等比数列求和教案
《等比数列的前n项和》教学设计 教材:人教版必修五§2.5.1 教学目标:(1)知识目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题
-
等差数列、等比数列的证明及数列求和5篇
等差数列、等比数列的证明1.已知数列an满足a11,an3an12n3n2, (Ⅰ)求证:数列ann是等比数列;(Ⅱ)求数列an的通项公式。2.已知数列an满足a15,an12an3nnN*, (Ⅰ)求证:数列an3n是等比数列;(Ⅱ)求数
-
等比数列求和作业5篇范文
2.5《等比数列前n项和》(第二课时)作业
1、 在等比数列中,a1a2a36,a2a3a43, 则a3a4a5a6a7 A. 11
8B.1916C.98D.34
2、在等比数列an中,a15,S555,则公比q等于
A.4B. 2C.2D.2或4
3、 -
山东省等比数列求和教案
等比数列的前n项和 1.知识与技能目标: 1)掌握等比数列求和公式,并能用之解决简单的问题。 2)通过对公式的推导,对学生渗透分类讨论思想以。 2过程与方法目标: 通过对公式的推
-
等比数列求和教学设计
等比数列的前n项和 甘天威 一:教学背景 1.面向学生: 中学 学科: 数学 2.课时: 2个课时 3.学生课前准备: (1)预习书本内容 (2)收集等比数列求和相关实际问题。 二:教学课题 教养方面: 1
-
证明等比数列
证明等比数列记Cn=an*a(n+1)cn/c(n-1)=an*a(n+1)/an*a(n-1)=a(n+1)/a(n-1)=3a(2n-1)=3*a(2n-3)a(2n)=3*a(2n-2)bn=a(2n-1)+a(2n)=3*a(2n-3)+3*a(2n-2)=3(bn-1)因此bn/b(n-1)
-
等比数列的证明★
等比数列的证明数列an前n项和为Sn已知a1=1a(n+1)=(n+2)/n乘以Sn(n=1,2,3......)证明(1)(Sn/n)是等比数列(2)S(n+1)=4an1、A(n+1)=(n+2)sn/n=S(n+1)-Sn即nS(n+1)-nSn=(n+2)Sn
-
等差等比数列的证明
专题:等差(等比)数列的证明1.已知数列{a}中,anan15且2an12n1(n2且nN*).an1(Ⅰ)证明:数列2n为等差数列;(Ⅱ)求数列{an}的前n项和S. n2. 已知数列{a}中,an12且an1an2n30(n2且nN*).证明:数列an2
-
数列求和公式证明
1)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6从左边推到右边数学归纳法可以证也可以如下做 比较有技巧性n^2=n(n+1)-n1^2+2^2+3^2+......+n^2=1*2-1+2*3-2+....+n(n+1)-n=1*2+2*
-
无穷递缩等比数列求和教学案例及反思
无穷递缩等比数列求和教学案例及反思 如“无穷递缩等比数列求和”是在学生学习了数列及数列极限等知识的基础上提出来的,它与数列、方程、函数和极限等知识有内在的联系,能
-
等差、等比数列的判断和证明
等差、等比数列的判断和证明一、 1、等差数列的定义:如果数列an从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。即anan
-
证明数列是等比数列[5篇材料]
证明数列是等比数列an=(2a-6b)n+6b当此数列为等比数列时,显然是常数列,即2a-6b=0这个是显然的东西,但是我不懂怎么证明常数列吗.所以任何一个K和M都应该有ak=amak=(2a-6b)k+6ba
-
等差数列与等比数列的证明
龙源期刊网 http://.cn
等差数列与等比数列的证明
作者:刘春建
来源:《高考进行时·高三数学》2013年第03期
一、 考纲要求
1. 理解等差数列的递推关系,并能够根据递推关系证明 -
等差数列与等比数列的证明方法[最终定稿]
等差数列与等比数列的证明方法高考题中,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢?证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法
-
求等比数列的参数及证明等比数列[5篇]
求等比数列的参数及证明等比数列例1、(Ⅰ)已知数列Cn,其中Cn2n3n,且数列Cn1pCn为等比数列,求常数p;(Ⅱ)设an、bn是公比不相等的两个等比数列,Cnanbn,证明数列Cn不是等比数列分析:要求常
-
一轮复习等差等比数列证明练习题
Fpg 1.已知数列an是首项为a1,公比q141の等比数列,bn23log1an 44(nN*),数列cn满足cnanbn. (1)求证:bn是等差数列; 2ana2,aa6a6(nN), n1nn2.数列满足1设cnlog5(an3). (Ⅰ)求证:cn是等比数列; *
-
一轮复习等差等比数列证明练习题
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。 1.已知数列an是首项为a1,公比q141的等比数列,bn23log1an 44(nN*),数列cn满足cnanbn. (1)求证:bn是等差数列; 2ana2,aa6a6(nN), n1n