专题:等差数列等比数列复习
-
等差数列、等比数列知识点梳理
等差数列和等比数列知识点梳理 第一节:等差数列的公式和相关性质 1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:anan1d(d为
-
等差数列、等比数列综合习题
等差数列等比数列综合练习题 一.选择题 1. 已知an1an30,则数列an是 A. 递增数列 B. 递减数列 C. 常数列 D. 摆动数列 1,那么它的前5项的和S5的值是 231333537A. B.C. D. 22223.
-
等差数列与等比数列的性质
第24课 等差数列与等比数列的性质●考试目标主词填空1.等差数列的性质.①等差数列递增的充要条件是其公差大于0,②在有穷等差数列中,与首末两端距离相等的和相等.即a1+an=a2
-
等差数列与等比数列的证明
龙源期刊网 http://.cn
等差数列与等比数列的证明
作者:刘春建
来源:《高考进行时·高三数学》2013年第03期
一、 考纲要求
1. 理解等差数列的递推关系,并能够根据递推关系证明 -
类比探究等差数列和等比数列的性质
类比探究等差数列和等比数列的性质上海市桐柏高级中学李淑艳 马莉上海市普陀区教育学院刘达一、案例背景本课的教学内容是上海市高中课本《数学》(华东师范大学出版社)高中二
-
等比数列等差数列前n项和习题。(精选)
一. 选择题
1. 若等比数列an的前n项和Sn3na则a等于 A. 3B. 1C. 0D. 1
2. 等比数列an的首项为1,公比为q,前n项和为S,则数列
A.
1S
1
的前n项之和为na
B. SC.
Sq
n1
D.
1q
n1
S3. -
等差数列与等比数列的证明方法[最终定稿]
等差数列与等比数列的证明方法高考题中,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢?证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法
-
等差数列与等比数列专题辅导(小编推荐)
等差数列与等比数列专题辅导
在等差数列{an}中, a7=9, a13=-2, 则a25=
A-22B-24C60D64
在等比数列{an}中, 存在正整数m, 有am=3,am+5=24, 则am+15=
A864B1176C1440D15 -
等差数列复习教案
等差数列
高考考点:
1.等差数列的通项公式与前n项和公式及应用;
2.等差数列的性质及应用.
知识梳理:
1.等差数列的定义:2.等差中项3.通项公式4.前n项和公式5.等差数列的性质(基 -
等差数列复习学案
友好三中高一数学学案设计人:刘磊组长审核:设计时间:2009-3-1 讲授时间:等差数列复习一、学习目标:1、通过学案能灵活运用通项公式求等差数列的首项、公差、项数、指定项,并通过通
-
等差数列复习(推荐阅读)
6.2 等差数列 尊敬的各位评委、各位老师,大家好!我抽签的序号是14号,叫„„,来自高三年级,我说课的题目是“等差数列”复习课的第一课时,我将从教材分析、学情分析、教学目标分析
-
等差数列和等比数列的中项性质的拓展
等差数列和等比数列的中项性质的拓展———福贡县第一中学杨豪摘要:等差数列和等比数列的中项性质是高中数学中的一个重要内容,也是高考数学命题的一个热点。如果我们从本质上
-
等差数列、等比数列的证明及数列求和5篇
等差数列、等比数列的证明1.已知数列an满足a11,an3an12n3n2, (Ⅰ)求证:数列ann是等比数列;(Ⅱ)求数列an的通项公式。2.已知数列an满足a15,an12an3nnN*, (Ⅰ)求证:数列an3n是等比数列;(Ⅱ)求数
-
等差数列复习课教案
等差数列复习课 (一) 三维目标 1. 知识与技能:复习等差数列的定义、通项公式、前n项和公式及相关性质. 2. 过程与方法:师生共同回忆复习,通过相关例题与练习加深学生的理解. 3. 情
-
等差数列与等比数列的综合问题复习教案(整理好的很详细)
等差数列与等比数列的综合问题 ●知识梳理 (一)等差、等比数列的性质 1.等差数列{an}的性质 (1)am=ak+(m-k)d,d=amak. mk(2)若数列{an}是公差为d的等差数列,则数列{λan+b}(λ、b为常数)
-
第2课时--等差数列与等比数列的基本运算
一.课题:等差数列与等比数列的基本运算二.教学目标:掌握等差数列和等比数列的定义,通项公式和前n项和的公式,并能利用这些知识解决有关问题,培养学生的化归能力.三.教学重点:对等差数
-
deng等差数列与等比数列的证明方法(共五则)
等差数列与等比数列的证明方法高考题中,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢?证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法
-
等差数列复习课(第一课时)
等差数列复习课(第一课时)濮阳市二高王卓原创 ☆考纲要求:1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关