专题:等差数列的性质学案
-
2.2.1等差数列的性质(学案4)
2.2.1等差数列的性质(学案4)
一、基础知识 1、等差数列定义
2、等差通项公式
3、等差数列性质
(1)若mnpq2t,则(2)若数列an是等差数列,则
数列ak,akm,ak2m,……成等差,公差为数列kanb是等 -
学案:等差数列及和
等差数列及其前n项和
一.高考考纲
1.考查运用基本量法求解等差数列的基本量问题.掌握等差数列的定义与性质、通项公式、前n项和公式等.
2.考查等差数列的性质、前n项和公式及综合 -
等差数列的性质(定稿)
等差数列的性质
1.数列
为等差数列,
,则a3=
2.设x,a1,a2,a3,y成等差数列,x,b1,b2,b3,b4,y成等差数列,则
的值是 -
等差数列复习学案
友好三中高一数学学案设计人:刘磊组长审核:设计时间:2009-3-1 讲授时间:等差数列复习一、学习目标:1、通过学案能灵活运用通项公式求等差数列的首项、公差、项数、指定项,并通过通
-
等差数列的性质总结
1.等差数列的定义式:anan12.等差数列通项公式:ana1(n1)ddna1d(nN*),首项:a1,公差:d,末项:anaam推广: anam(nm)d.从而dn; nm3.等差中项(1)如果a,A,b成等差数列,那么A叫做a与b的等差中项.即:A(2)
-
高中数学等差数列性质总结大全
等差数列的性质总结(一)等差数列的公式及性质1.等差数列的定义: anan1d(d为常数)(n2);2.等差数列通项公式:ana1(n1)ddna1d(nN*),首项:a1,公差:d,末项:an推广: anam(nm)d.从而d3.等差中项(1)
-
2.2.1等差数列(学案3)
2.2.1等差数列(学案3)
一.基础知识 1.等差数列
2.通项公式
3.等差中项
4.证明方法
5.判定方法
二.例题
1.已知数列an的通项公式an3n5,这个数列是等差数列吗?2.已知等差数列10,7,4,…. -
等差数列与等比数列的性质
第24课 等差数列与等比数列的性质●考试目标主词填空1.等差数列的性质.①等差数列递增的充要条件是其公差大于0,②在有穷等差数列中,与首末两端距离相等的和相等.即a1+an=a2
-
《等差数列性质》的教学反思
高三一轮复习,重在夯基释疑,培养和提高学生运用知识、解决问题的能力。本节课以学生为主体,教师为主导,充分调动了学生的积极性。教师教态自然,亲和力好,课堂气氛融洽。教学环节的
-
类比探究等差数列和等比数列的性质
类比探究等差数列和等比数列的性质上海市桐柏高级中学李淑艳 马莉上海市普陀区教育学院刘达一、案例背景本课的教学内容是上海市高中课本《数学》(华东师范大学出版社)高中二
-
等差数列的一个特征性质及应用
等差数列第一个特征性质及应用江西南昌市卫生学校熊秋玲内容提要:本文证明等差数列的一个重要性质:数列{an}是等差数列的充要条件为:对于任意三个自然数q,p,r,恒有(q-r)ap+(r-p)
-
等差数列运算与性质专项训练
等差数列的运算1.在等差数列an中,a22,a34,则a10()(A)12(B)14(C)16(D)182.将含有k项的等差数列插入4和67之间,结果仍成一新的等差数列,并且新的等差数列所有项的和是781,则k的值
-
等差数列一轮复习导学案
等差数列考纲要求1.了解等差数列与一次函数的关系.2.理解等差数列的概念.3.掌握等差数列的通项公式与前n项和公式;能在具体的问题情境中,识别数列的等差关系,并能运用有关知识解决问
-
等差数列和等比数列的中项性质的拓展
等差数列和等比数列的中项性质的拓展———福贡县第一中学杨豪摘要:等差数列和等比数列的中项性质是高中数学中的一个重要内容,也是高考数学命题的一个热点。如果我们从本质上
-
讲等比数列性质学案doc
2.4等比数列性质学习目标:1、理解等比数列的主要性质, 能推导证明有关性质; 2、能运用有关性质进行计算和证明. 【温故知新】1.已知数列{an}的前4项为2,6,18,54,则它的一个通项
-
弦切角的性质学案[大全]
弦切角的性质学案班级姓名等级学习目标:1.理解弦切角的概念;2.掌握弦切角定理及推论,并会运用它们解决有关问题;3.理解化归和分类讨论的数学思想方法以及完全归纳的证明方法.学
-
平行四边形性质1学案
19.1.1 平行四边形的性质(第一课时)学案 一、学习目标: 1.加深对平行四边形定义的理解 2.探究后理解平行四边形的对边相等;对角相等的性质并能够进行有关的推理和计算. 二、
-
平行四边形的性质学案
☆☆平行四边形的性质学案☆☆平行四边形的性质 练习1(边:平行四边形的对边相等,邻边之和=______周长) (1)在□ABCD中,AB=8,BC=4,其余各边长为多少?其周长等于多少? (2)若□ABCD的周长是