专题:二次函数培优专题训练
-
二次函数专题训练[优秀范文5篇]
二次函数专题训练
一、解不等式
(1)2x14x30(2)2x23x10(3)3x24x40
(4)x1x3x20(5)22x10 x3
二、(1)求3x10xk0有两个同号且不相等的实根的充要条件.
ax2x10至少有一个负数的实根的充要条 -
二次函数
?二次函数?测试一.选择题〔36分〕1、以下各式中,y是的二次函数的是()A.B.C.D.2.在同一坐标系中,作+2、-1、的图象,那么它们()A.都是关于轴对称B.顶点都在原点C.都是抛物线开口向上D.以上
-
二次函数
2.二次函数定义__________________________________________________二次函数(1)导学案
一.教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围 -
二次函数训练案[优秀范文五篇]
1.若二次函数 2f x ax bx c 的图像的顶点坐标为 2, 1 ,与 y 轴的交点坐标为(0,11),则 A. 1, 4, 11 a b c B. 3, 12, 11 a b c C. 3, 6, 11 a b c D. 3, 12, 11 a
-
二次函数综合题
二次函数综合题 如图所示,在直角坐标系中,A(-1,0),B(3,0),C(0,3) 1.用三种方法求出经过A B C三点的抛物线解析式2.抛物线的顶点坐标为D( ) 3.求△ABC的面积,求四边形ACDB的面
-
二次函数练习
二次函数练习
1,函数fxx2bxc,对于任意tr,均有f2xf2x则f1,f2,f4,的大小关系是_____________________
2,二次函数yax24xa3的最大值恒为负,则a的取值范围是________________------ 3,二 -
《二次函数 》教案
命题人:刘英明 审题人:曹金满 课型:新授课《二次函数 》教案学习重点:通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.学习难点:理解二次函数的概念,掌握
-
二次函数教案
二次函数教案 本资料为woRD文档,请点击下载地址下载全文下载地址20.1二次函数一、教学目标: .知识与技能: 通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模
-
《二次函数》说课稿
《二次函数》说课稿
课题:22.1 二次函数(第一节课时)
一、教材分析:
1、教材所处的地位:
二次函数是沪科版初中数学九年级(上册)第22章的内容,在此之前,学生在八年级已经学过了函数及 -
二次函数练习
练习【动动手、动动脑,让我们课堂更精彩!】 1.如图,抛物线y=x2-2x-3与x轴交A、B两点,与y轴交于D点.直线l与抛物线交于A、C两点,其中C点的横坐标为2. 填空:A点坐标为( , );B点坐标
-
二次函数(精选五篇)
配方法:用配方法解方程ax2+bx+c=0 (a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+2=- +2
方程左边成为一 -
二次函数复习
二次函数复习(1)教学反思
在二次函数复习这节课中,围绕(1)二次函数的定义(2)二次函数的图像、性质与a、b、c的关系(3)二次函数解析式的求法(4)数形结合这四个知识点进行练习。 下面我要 -
05二次函数
05二次函数
(3)(2011重庆文)曲线yx23x2在点(1,2)处的切线方程为A
(A)y3x1(B) y3x5
(C) y3x5(D) y2x -
二次函数(三)
26.1二次函数〔三〕一、双基整合:1.抛物线y=20-x2可以看作抛物线y=______沿y轴向______平移_____个单位得到的.2.抛物线y=-3x2上两点A〔x,-27〕,B〔2,y〕,那么x=_______,y=_______.3.抛物
-
二次函数1
第二章二次函数一、选择题〔共30分〕1.在以下关系式中,y是x的二次函数的关系式是A.2xy+x2=1B.y2-ax+2=0C.y+x2-2=0D.x2-y2+4=02.设等边三角形的边长为x(x>0〕,面积为y,那么y
-
二次函数单元测试
二次函数单元测试一、选择题1.函数y=2x具有性质().(A)当x为任何实数时,y的值总是正的(B)当x的值增大时,y的值也总随着增大(C)它的图象关于y轴对称(D)它的图象在第一、三象限内2.如
-
二次函数练习题
§3.4二次函数复习目标1.二次函数的定义:形如〔a≠0,a,b,c为常数〕的函数为二次函数.2.二次函数的图象及性质:〔1〕二次函数的图象是一条抛物线.顶点为〔-,〕,对称轴x=-;当a>0时,抛物线开口
-
二次函数练习
26.1二次函数(第二课时)练习班级:_______姓名:_______一、请准确填空1、假设函数y=(k2-4)x2+(k+2)x+3是二次函数,那么k______.2、函数y=,当k=______时,它的图象是开口向下的抛物线