专题:复数解决三角函数
-
复数+平面向量+三角函数(解析版)(共5篇)
【高中文科数学专题复习之___】复数+平面向量+三角函数一、 要点梳理1、复数的有关概念(1)复数的概念形如a+bi(a,b∈R)的数叫做复数,其中a,b分别是它的实部和虚部。若b=0,则a+b
-
三角函数测验题
离婚协议书范本
男方:叶镇强,男,汉族,1981年8月9日生,住河源市紫金县紫城镇金富大楼B1501,身份证号码:***516
女方:黄凤华,女,汉族,1985年1月11日生,住河源市紫金县紫城镇金 -
三角函数专题学案(精选合集)
三角函数专题学案(2012)考纲要求:1、任意角的概念、弧度制(1)了解任意角的概念和弧度制的概念;(2)能进行弧度与角度的互化.2、三角函数(1)理解任意角的三角函数(正弦、余弦、正切)的定义
-
三角函数教案设计
第四章 三角函数总 第1教时 4.1-1角的概念的推广(1) 教学目的: 推广叫的概念,引入正角、负角、零角;象限角、坐标上的角的概念;终边相同角的表示方法。 让学生掌握用“旋转”定义
-
三角函数教案
三角函数 1教学目标 ⑴: 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形 ⑵: 通过综合运用勾股定理,直角三角形
-
余弦定理 三角函数(模版)
对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质——a^2 = b^2 + c^22·a·c·cosBc^2 = a^2
-
数学三角函数
1.(2010·天津高考理科·T7)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2b2,sinCB,则A= ()(A)300(B)600(C)1200(D)15002.(2010·北京高考文科·T7)某班设计了一个八边形的班徽(如图),它由腰长为1,顶
-
三角函数口诀
二、《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割中心记上数字1,连结顶点三角 -
三角函数详解
2008.(本小题满分12分)已知函数f(x)2sinx4cosx42x4.(Ⅰ)求函数f(x)的最小正周期及最值;π,判断函数g(x)的奇偶性,并说明理由. 3x22sin2(Ⅱ)令g(x)fx解:(Ⅰ)f(x)sinx4)sinx2xπ2sin223x. f(x)
-
2011高考题--三角函数
北京15.(本小题共13分)已知函数f(x)4cosxsin(x(Ⅰ)求f(x)的最小正周期:,上的最大值和最小值。 646)1。(Ⅱ)求f(x)在区间全国5.设函数f(x)cosx(>0),将yf(x)的图像向右平移的图像与原图像
-
名词复数
1. 名词复数的构成方法规则变化的复数名词遵循以下原则: (1) 在一般情况下,加词尾 -s: desk→desks 书桌 tree→trees 树face→faces 脸(2) 以 s, x, z, sh, ch 等结尾的名词
-
复数教案
2014年10月16日教案 教学课程 复数的有关概念 教学目标 (1)掌握复数的有关概念,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概
-
复数课件
复数 在人的一般印象中,对于数字的概念,一般都是-1 -2 0.1.2.3,或者1.1,1.2 再深一点就是√2 ,√3.诚然,每一种新的数的范围的发现到被人为人接受,熟知,是要经过一段历程,在过去的历
-
复数复习
1.若复数(a2-4a+3)+(a-1)i是纯虚数,则实数a的值是.2.已知M={1,2,(a-1)+(b-5)i},N={-1,3},M∩N={3},实数a与b的值分别是.z2-2z3.已知复数z=1-i. z-14.已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形
-
复数知识点
2011年高考总复习制作:孙老师2010-11-17复数知 识 点1. ⑴复数的单位为i,它的平方等于-1,即i21.⑵复数及其相关概念:① 复数—形如a + bi的数(其中a,bR);② 实数—当b = 0时的复数a +
-
复数名词整理
1、clothes, cloth, clothing有什么区别,举例说明
clothes 是“衣服”,指具体的衣服,不能用作单数,也不能和数词连用。不能说a clothes,five clothes,也不说The clothes is „, -
复数说课稿
《复数的有关概念》说课稿大家好!我是焦作一中的郜珂。今天,有幸借此平台与大家交流,希望各位专家和老师指导我的说课。我说课的题目是《复数的有关概念》,我将从教材分析、学情
-
《锐角三角函数》说课稿
《锐角三角函数》说课稿 元城初中 李先龙 一.知识技能: 1、通过复习进一步理解锐角三角形函数的概念,能熟练地应用sinA,cosA,tanA表示直角三角形中的两边的比,熟记30°,45°,60°角