专题:函数的图象第1课时
-
第1课时 正比例函数的图象与性质
4.3 一次函数的图象 第1课时 正比例函数的图象与性质 【学习目标】 1.会作正比例函数的图象. 2.通过作图归纳正比例函数图象的性质. 【学习重点】 作正比例函数图象. 【学习难点
-
第1课时 二次函数y=ax2+bx+c的图象和性质(教案)
22.1.4 二次函数y=ax2+bx+c的图象和性质 第1课时 二次函数y=ax2+bx+c的图象和性质 教学目标 【知识与技能】 1.能通过配方法把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k的形式
-
第12课时指数函数图象和性质1[定稿]
盐城市2009届高三艺术生数学一轮复习教学案 §12指数函数图象和性质 【典型例题讲练】 例1 要使函数y12x4xa在x,1上y0恒成立.求a的取值范围. 练习已知2x例2 已知函
-
课时2-22.1_二次函数的图象_教学设计
教学准备 1. 教学目标 1.知识与技能 能够用描点法作出函数y=ax2的图象,并根据图象认识和理解其性质 2.过程与方法 经历探索二次函数y=ax2的图象和性质的过程,体会数形结合的思
-
19.1.2函数的图象 教案
19.1.2函数的图像 19.1.2 函数的图象 教学目标 (一)教学知识点 1.了解函数图象的一般意义,初步学会用列表、描点、连线画函数图象. 2.学会观察、分析函数图象信息. (二)能力训练要求 1.提
-
有理分式函数的图象及性质
有理分式函数的图象及性质【知识要点】 1.函数yaxbcxd(c0,adbc)dcdc(2)值域:{y|y(1)定义域:{x|x单调区间为(,直线xdc,ydcacbx),(,+)(4)dc,ac,对称中心为点()(5)奇偶性:当ad0时为奇函数。(6
-
函数图象的教学反思
《函数图象》的教学反思 广厚中心学校 石立军 本节内容的知识目标是探索具体问题中的数量关系和变化规律,运用函数的图象的知识进行描述和解决;能力目标是能选择、处理数学
-
二次函数的图象与性质1(最终版)
二次函数的图象与性质(1)
〖课标要求〗:会用描点画二次函数的图象,能根据图象说出二次函数的性质,并能运用其
性质解决有关问题。〖教学目标〗:
知识与技能:能够运用描点法作出函数 -
反比例函数的图象与性质教案(第二课时)
九年级(下册) 第一章 反比例函数的图象与性质(第1课时) ---2 新知导读 1.画函数y2x的图象,首先应列出x、y的一些对应值,不列表你能知道横坐标x与纵坐标的符号之间有何关系吗? 答:符号
-
函数y=Asin(ωx+φ)图象说课稿(汇编)
函数y=Asin(ωx+φ)图象说课稿1一、教材分析1、教材的地位和作用在学习这节课以前,我们已经学习了振幅变换。本节知识是学习函数图象变换综合应用的基础,在教材地位上显得十分
-
函数的图象教学设计(大全5篇)
函数的图象--------教学设计 呼兰区第二中学 11继任 王丽艳 教学目标: 1、知识与技能:使学生了解函数图象的意义,掌握画函数图象的方法,会函数图象的简单应用。 2.过程与方法:经
-
二次函数的图象和性质教案
27.2.1 相似三角形的判定(一) 梅 一、教学目标 1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力. 2.掌握两个三角形相似的判定条
-
正弦函数余弦函数图象教学设计
正弦函数、余弦函数的图象的教学设计 一、 教学内容与任务分析 本节课的内容选自《普通高中课程标准实验教科书》人教A版必修四第一章第四节1.4.1正弦函数、余弦函数的图象
-
高一数学正余弦函数的图象和性质1
亿库教育网http://www.xiexiebang.com 百万教学资源免费下载 4.8正弦函数、余弦函数的图象和性质(1) 教学目的: 1.理解并掌握作正弦函数和余弦函数图象的方法. 2.理解并熟练掌握
-
正弦函数、余弦函数的图象和性质教案
正弦函数、余弦函数的图象和性质 一、学情分析: 1、学习过指数函数和对数函数; 2、学习过周期函数的定义; 3、学习过正弦函数、余弦函数0,2上的图象。 二、教学目标: 知识目标
-
6.2 反比例函数的图象和性质 教案
6.2 反比例函数的图象和性质(1)教案 [教学目标] 1、体会并了解反比例函数的图象的意义 2、能描点画出反比例函数的图象 3、通过反比例函数的图象的分析,探索并掌握反比例函数的
-
(公开课教案)正弦函数、余弦函数的图象
正弦函数、余弦函数的图象 湖南省泸溪县第一中学 邓德志 一、教材分析 三角函数是基本初等函数之一,它是中学数学的重要内容之一,也是学习高等数学的基础,研究办法主要是代数变
-
1.4.1正弦函数,余弦函数的图象教案
§1.4.1正弦函数,余弦函数的图象 【教学目标】 1、知识与技能: (1)利用单位圆中的三角函数线作出ysinx,xR的图象,明确图象的形状; (2)根据关系cosxsin(x2),作出ycosx,xR的图象; (3)用“