专题:函数与导数的综合问题
-
函数与导数综合问题
龙源期刊网 http://.cn
函数与导数综合问题
作者:
来源:《数学金刊·高考版》2013年第06期
深化导数在函数、不等式、解析几何等问题中的综合应用,加强导数的应用意识.
本考点 -
高中数学构造函数解决导数问题专题复习
高中数学构造函数解决导数问题专题复习【知识框架】【考点分类】考点一、直接作差构造函数证明;两个函数,一个变量,直接构造函数求最值;【例1-1】(14顺义一模理18)已知函数(Ⅰ)当时,
-
构造函数解导数
合理构造函数解导数问题 构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键。 例1:
-
导数与数列不等式的综合证明问题
导数与数列不等式的综合证明问题 典例:(2017全国卷3,21)已知函数fxx1alnx 。 (1)若fx0 ,求a的值; (2)设m为整数,且对于任意正整数n1111 11m ,求m的最小值。2n222分析:(1)由原函数与导函
-
第二章与第三章:函数导数与导数的应用
第二章与第三章:函数导数与应用1、求函数在一点的导数
例如:设函数f(x)xcosx,则f'(0)?
2、讨论函数yx在定义域范围内的单调性
3、记住结论:
函数在某点不可导,函数所表示的曲线在 -
函数单调性与导数教案(5篇)
3.3.1函数的单调性与导数 【三维目标】 知识与技能:1.探索函数的单调性与导数的关系 2.会利用导数判断函数的单调性并求函数的单调区间 过程与方法:1.通过本节的学习,掌握用导
-
函数与导数二轮复习(共5则范文)
函数与导数
[考点分析预测]
考点一基本函数的图象与性质
考点二 分段函数与复合函数
考点三抽象函数与函数性质
考点四 函数图象及其应用
考点五 导数的概念与意义
考点六 -
二阶导数与函数凹凸性证明
证明设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么若在(a,b)内f"(x)>0,则f(x)在[a,b]上的图形是凹的。
设x1和x2是[a,b]内任意两点,且x1 -
函数导数不等式测试题五篇
昌乐二中 高三 数学自主检测题函数、导数、不等式综合检测题2009.03.20注意事项:1.本试题满分150分,考试时间为120分钟.2.使用答题卡时,必须使用0.5毫米的黑色墨水签字笔书写,作图
-
常用函数的导数教学设计
几个常用函数的导数教学设计 一、课题引入 情境一:我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数yf(x),如何求它的
-
导数--函数的极值练习题
导数--函数的极值练习题
一、选择题
1.下列说法正确的是
A.当f′(x0)=0时,则f(x0)为f(x)的极大值 B.当f′(x0)=0时,则f(x0)为f(x)的极小值 C.当f′(x0)=0时,则f(x0)为f(x)的 -
2011北京一模数学函数导数综合试题小结
海淀理科 18. (本小题共13分) 已知函数f(x)xalnx,g(x)(Ⅰ)若a1,求函数f(x)的极值; (Ⅱ)设函数h(x)f(x)g(x),求函数h(x)的单调区间; (Ⅲ)若在1,e(e2.718...)上存在一点x0,使得f(x0)g(x0)成
-
二次函数综合之与线段有关的问题
与线段有关的问题一、线段数量关系1、如图,在平面直角坐标系中,直线与轴交于点、与轴交于点点,点的坐标为,点是直线上的一动点,若满足∽,求点的坐标和的值2、如图,抛物线与坐标轴
-
2022届高三专题复习:构造辅助函数求解导数问题
构造辅助函数求解导数问题专题讲座1.“作差(商)法”构造函数当试题中给出简单的基本初等函数,例如f(x)=x3,g(x)=lnx,要证明在某个取值范围内不等式f(x)≥g(x)成立时,可以构
-
函数的单调性与导数课后反思
课后反思 1. 本节课的亮点: 教学过程中教师指导启发学生以已知的熟悉的二次函数为研究的起点,发现函数的导数的正负与函数单调性的关系,从而到更多的,更复杂的函数,从中发现规律,
-
《函数的单调性与导数》评课稿
《函数的单调性与导数》评课稿
恩平一中谭青华
本节课郑凯老师运用多种教学手段,创设了丰富、生动的教学情境,设计了新颖、活泼的学生活动。成功的地激发了学生的学习兴趣。下 -
1.3.2函数的极值与导数教学反思
《1.3.2函数的极值与导数》的教学反思 应用函数极值与导数的关系求函数极值,用导数求闭区间上函数的最大值和最小值的方法让学生经过实例分析,熟练灵活掌握,使学生经历知识产生
-
函数的导数和它的几何意义
2.8 函数的导数和它的几何意义 8-A 函数的导数 前一节中描述的例子给出了引进导数概念的方法。我们从至少定义在x-轴上的某个开区间(a,b)内的函数f(x)开始,然后我们在这个区间