专题:函数与方程练习含答案
-
函数与方程教案
函数与方程教案 27.3实践与探索(第二课时) 二次函数与一元二次方程的关系 晋城四中 李前进 【教学目标】 1、知识与技能: (1)体会函数与方程之间的联系,初步体会利用函数图象
-
函数与方程教案(5篇模版)
第四章:函数应用 §1:函数与方程 教学分析:课本选取探究具体的一元二次方程的根与其对应二次函数的图像与x轴交点的横坐标之间的关系作为本节的入口。其意图是让学生从熟悉的
-
函数与方程知识点总结[范文]
在中国古代把数学叫算术,又称算学,最后才改为数学。数学分为两部分,一部分是几何,另一部分是代数。小编准备了高一数学函数与方程知识点,希望你喜欢。一、函数的概念与表示1、映
-
“函数与方程思想”案例分析
教学设计案例分析——“函数与方程思想”案例一.主题 函数与方程是中学数学的重要概念,他们之间有着密切的联系;函数与方程的思想是中学的基本思想,主要依据题意,构造恰当的函数,
-
研究性学习14 函数与方程(合集)
2013届高三理科数学研究性学习(14)
专题十一:函数与方程相关问题研究(复合函数的根的问题研究)
例:(教学与测试第4课时)已知函数f(x)x2xq,集合Axf(x)0,xR, Bxf(f(x))0,xR.(1)若q2,试求集 -
《方程的根与函数的零点》教案设计
《方程的根与函数的零点》教案设计 1、教学设计的理念 本节课以提升数学核心素养的为目标任务,树立学科育人的教学理念,以层层递进的“问题串”引导学生学习,运用从特殊到一般
-
《方程的根与函数的零点》说课稿
3.1.1方程的根与函数的零点教学设计说明 各位尊敬的老师,下午好。今天我说课的题目是《方程的根与函数的零点》。下面我将从教材的地位与作用、学情分析,教学目标与重难点分析
-
方程的根与函数零点的说课稿
“方程的根与函数的零点”说课稿各位老师,你们好! 我说课的课题是 “方程的根与函数的零点” 说课内容分为六个部分, 首先对教材进行简要分析一、教材分析方程的根与函数的零点
-
方程练习姓名
方程练习姓名__________一、填空题1.方程x32x0的根是_____________.2.方程x2x的根是______________..方程xx的根是.x210的根是___________.方程2x1x的解是 __. 3.方程x14.方程组xy2的
-
函数极限与连续习题(含答案)
1、已知四个命题:(1)若
(2)若
(3)若
(4)若f(x)在x0点连续,则f(x)在xx0点必有极限 f(x)在xx0点有极限,则f(x)在x0点必连续 f(x)在xx0点无极限,则f(x)在xx0点一定不连续f(x)在xx0点不连续, -
函数方程不等式教学反思(推荐)
函数、方程、不等式教学反思
-----汪辉
本节课用五个环节组织教学。环节一是知识的回顾,这部分复习了函数、方程、不等式的基础知识,引入部分简单过渡,激发兴趣,为后面作铺垫。 -
二次函数练习
二次函数练习
1,函数fxx2bxc,对于任意tr,均有f2xf2x则f1,f2,f4,的大小关系是_____________________
2,二次函数yax24xa3的最大值恒为负,则a的取值范围是________________------ 3,二 -
二次函数练习
练习【动动手、动动脑,让我们课堂更精彩!】 1.如图,抛物线y=x2-2x-3与x轴交A、B两点,与y轴交于D点.直线l与抛物线交于A、C两点,其中C点的横坐标为2. 填空:A点坐标为( , );B点坐标
-
二次函数练习
26.1二次函数(第二课时)练习班级:_______姓名:_______一、请准确填空1、假设函数y=(k2-4)x2+(k+2)x+3是二次函数,那么k______.2、函数y=,当k=______时,它的图象是开口向下的抛物线
-
方程的根与函数的零点教学设计
教师的工作就不是原来的意义的教书,应改变为导书,即指导学生去读书,在指导学生学习的同时要点拨给学生学习的方法,帮助学生解疑析难,指导学生形成知识体系与思想方法,亦即将教法向
-
“方程的根与函数的零点”教学设计
一.内容和内容解析 本节内容有函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理. 函数零点是研究当函数的值为零时,相应的自变量的取值,反映在函数图象上,
-
方程的根与函数的零点教学设计
方程的根与函数的零点教学设计 教学内容与任务分析 本节课的内容选自《普通高中课程标准实验教科书》人教A版数学必修一第三章第一节3.1.1方程的根与函数的零点。本节课的主
-
方程的根与函数零点的教案设计5篇
用几何图形巧解向量问题 北京市垂杨柳中学 刘占峰 一、教材分析 本节是在复习完必修4第2章平面向量的概念、运算、坐标及应用整章知识后的一堂专题研讨课.教材一直坚持从数