专题:几何说理题
-
初一几何说理题08(定稿)
初一几何说理题08
1.(1)我们知道三角形的内角和是180°,请猜测四边形的内角和是多少度? 解:四边形的四个内角和等于°. (2)利用下面两种方法验证你的猜想,请说明理由: 解法一:如图28-1 -
七年级下-几何说理题专项练习
七年级下-几何说理题(1).如图,∠1=120°,∠BCD=60°,AD与BC为什么是平行的?(填空回答问题) 解:∵∠1+∠2=__________,(_________). 又∠1=120°( 已知), ∴∠2=____________.∵∠BCD=60°(
-
初一几何题
初一几何试题一、 选择题(每题2分,共52分)1.下列说法中,正确的是()A、棱柱的侧面可以是三角形BC、正方体的各条棱都相等 D、棱柱的各条棱都相等2.用一个平面去截一个正方体,截面不可
-
初二几何题精选
(矩形)如图,矩形ABCD的边长AB=6,BC=8,将矩形沿EF折叠,使C点与A点重合,则折痕EF的长是(A)7.5(B)6(C)10(D)5(矩形)如图,E是矩形ABCD的边AD上一点,且BE=ED,P是对角线BD上任意一点,PF⊥BE,PG⊥AD,垂足分别
-
解几何题技巧
分析已知、求证与图形,探索证明的思路。
对于证明题,有三种思考方式:
(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)逆向思维。顾名思义, -
初一几何题集[范文模版]
初一下学期几何题集1,如果1和2互余,1和3互为补角,2和3的和等于周角的3,求这三个角的度数。 2,如图AB//EF//CD,EG平分BEF,BBEDD192o,BD24o,求GEF的度数3,如图若FD//BE,求123的度数4,如图
-
几何证明题(提升题)(大全)
如图5,已知四边形ABCD,AB∥DC,点F在AB的延长线上, 连结DF交BC于E且S△DCE=S△FBE .(1)求证:△DCE≌△FBE;(2)若BE是△ADF的中位线,且BE+FB=6厘米,求DC+AD+AB的长.CA图5BF已知E为平行四边形ABCD
-
七年级数学几何题
1.已知:△ABC.求证:∠A+∠B+∠C=180°.图27.1.3J解∶做AC∥BE∴∠A=∠1∠C=∠2∵∠ABC+∠1+∠2=180°∴∠A+∠B+∠C=180°2. 求证: 三角形的一个外角等于和它不相邻的两个内角的和.已知: 如图2
-
说理作文
写理类作文训练
个性化:“自主”和“创新”是个性化作文的内涵。
例文:
“听话”论
记得小时候,听得最多的三个字就是“听话啊”。在家里要听家长的话,去串门要听叔叔阿姨的话,在 -
数学初二下册几何题
1、如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM. (1)求证:EF= 1/2AC (2)若∠BAC=45°,求线段AM、DM、BC之间数量关系. 2、如图,在△ABC中,D、E
-
初中数学几何题训练题
1.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成
-
我的几何题分析法
我的几何题分析法
九年级不同与其他低年级了,学生们学的多了,综合性强了,思维能力强的同学还行,可有部分同学拿到题后无所适从。久而久之,学生就会倦怠,就会厌烦,甚至放弃学习。特 -
【压轴题 精讲特训】挑战2014数学中考压轴题:几何证明及通过几何计算进行说理(含2013试题,含详解)
几何证明及通过几何计算进行说理问题例12013年上海市黄浦区中考模拟第24题已知二次函数y=-x2+bx+c的图像经过点P(0, 1)与Q(2, -3).(1)求此二次函数的解析式;(2)若点A是第一象限内该二次
-
《科学解释说理题讲评课》评课稿[合集5篇]
《科学解释说理题讲评课》评课稿今年xx市中考科学试卷改革的最大亮点是增加了一道6分的解释说理题,这无论是对于学生还是我们科学老师都非常陌生,本次区复习会议上温州××学
-
演讲稿说理执法
我叫××,来自××××公司小餐厅,演讲稿说理执法。今天,我演讲题目是:苦练技术造就“硬本领”、优质服务赢得“香满园”。首先,我想问大家,餐饮业的技术是什么?也许大家认为是烹饪
-
用说理造句
说理拼音【注音】: shuo li说理解释【意思】:(1)说明道理:~斗争|~的文章|咱们找他~去。(2)讲理;不蛮横(多用于否定式):你这个人~不~?说理造句1、咱们找他说理去。2、如果所有试图说理都失败了,不要
-
八年级四边形几何证明提高题(经典)(模版)
几何证明提高题 1、如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF. (1)若AB∥CD,试证明四边形ABCD是菱形; (2)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由. 2
-
七年级数学几何题注意要点
七年级数学几何题注意点
首先,基础一定要扎实,如果你基础不行,别去想那些难题目,直接搞基础。其实几何很简单,有些稍微有点复杂的题目,比如说他叫你证明某个关系式,那么你必须思考: