专题:数列复习教案教案
-
数列综合复习课教案
数列综合复习课教案2007.12.6文卫星例1 填空题在各项都为正数的等比数列an中,首项a1=3 ,前三项和为21,则a3a4a5=___ ; 设Sn是等差数列an的前n项和,已知S636,Sn324,Sn6144(n
-
数列教案
乐清体校 黄智莉 教学目标: 知识与技能:理解数列的有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的前几项甚至任意一项 过程与方法:通过对具体
-
数列教案
数列教案 教材分析 1. 地位作用 数列在整个中学数学教学内容中,处于一个知识汇合点的地位,很多知识都与数列有着密切联系,过去学过的数、式、方程、函数、简易逻辑等知识在这一
-
简单数列教案
北外附校小学部2010-2011学年度第一学期 二年级数学思维训练试题(认识简单数列教案) 我们把按一定规律排列起来的一列数叫数列. 在这一讲里,我们要认识一些重要的简单数列,还要
-
数列复习
一、等差数列的判定
1、利用定义法进行判定:数列复习若数列an满足:anan1d,n2,nNan1and,nN*a为等差数列 nn*a为等差数列 例题1、在数列{an}中,a1=-3,an=2an-1+2n+3(n≥2,且n∈N*).
求 -
数列求和教案
数列求和 数列求和常见的几种方法: (1) 公式法:①等差(比)数列的前n项和公式; 1n(n1) 21222n2nn( 123......6② 自然数的乘方和公式:123......n(2) 拆项重组:适用于数列1n)(2 1)an的通
-
数列求和教案
课题:数列求和 教学目标 (一) 知识与技能目标 数列求和方法. (二) 过程与能力目标 数列求和方法及其获取思路. 教学重点:数列求和方法及其获取思路. 教学难点:数列求和方法及其获取思
-
数列极限教案
数列的极限教案授课人:###一、教材分析极限思想是高等数学的重要思想。极限概念是从初等数学向高等数学过渡所必须牢固掌握的内容。二、教学重点和难点教学重点:数列极限概念
-
数列复习教案(例题加模拟题)1
数列 一.知识结构 数列与自然数 通项公式 集的关系 递推公式 数列的 定义 定义
-
高三一轮复习:数列求和教案及练习
数列求和 特殊数列求和 1.可化为等差数列等比数列自然数列的求和 1)2n1的前100项和为_____________, 2) 1aa2an__________ 3) 求9,99,999,9999,….的前100项和 4)求2nn1的前2m的和
-
数列复习4-5
数列复习(4)
主要内容:等比数列的定义、通项公式、性质、前n项和公式
一、等比数列的通项公式
例1、(1)已知数列{an}中,a3=2,a2+a4=20/3/求an
(2)a2+a5=18,a3+a6=9,an=1,求n
二、等 -
数列高考复习
2012届知识梳理—数列1a(n2k)112n(kN*),记bna2n1,1、(河西三模)设数列{an}的首项a1,且an124a1(n2k1)n4n1,2,3,(I)求a2,a3;(II)判断数列{bn}是否为等比数列,并证明你的结论;(III)证明b13b25
-
数列极限复习
数列极限复习题姓名242n1、lim=; n139(3)nan22n1a2、若lim(2n)1,则=; nbn2b1an3、如果lim0,则实数a的取值范围是;n2an4、设数列{an}的通项公式为an(14x),若liman存在,则x的取值范
-
数列第二轮复习
数列第二轮复习
考点一:等差、等比数列的概念与性质 例一:题型一:证明等差数列以及错位相减法 例1:在数列an中,a11,an12an2n. (Ⅰ)设bnan.证明:数列bn是等差数列; 2n1
(Ⅱ)求数列an的前n项 -
数列的应用教案
第十四教时
教材:数列的应用
目的:引导学生接触生活中的实例,用数列的有关知识解决具体问题,同时了解处
理“共项” 问题。
过程: 一、例题:
1.《教学与测试》P93 例一)大楼共n层,现 -
数列教案第三课时(范文大全)
第三教时 教材:等差数列(一) 目的:要求学生掌握等差数列的意义,通项公式及等差中项的有关概念、计算公式,并能用来解决有关问题。 过程: 一、引导观察数列:4,5,6,7,8,9,10,„„ 3,0,3,6,„„
-
(教案)数列综合应用
专题三:数列的综合应用 备课人:陈燕东 时间: 备课组长[考点分析] 高考关于数列方面的命题主要有以下三个方面; (1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项
-
第六章数列一章教案
第六章 数 列 6.1 数列的概念 教学目标:1.了解数列的概念和通项公式的意义,会求常见数列的通项公式. 2.培养学生观察、分析、归纳、判断问题的能力. 3.对学生进行由特殊到