专题:直线平面平行证明
-
证明直线平行
证明直线平行证明:如果a‖b,a‖c,那么b‖c证明:假使b、c不平行则b、c交于一点O又因为a‖b,a‖c所以过O有b、c两条直线平行于a这就与平行公理矛盾所以假使不成立所以b‖c由同
-
两直线平行证明
两直线平行相关证明题目1、如图,已知∠ABC=30,∠ADC=60,DE为ADC的平分线,请你判断哪两条直线平行,并说明理由。2、如图,在△ABC中,∠B=90,D在AC边上,DF⊥BC于点F,DE⊥AB于点E,那么AB与
-
直线平行证明分析
关于平行线证明
(1)条件中出现平行,则有三种写法
1.Z形:a//b,12(内错角形式) 2.F形:c//d,35(同位角形式)
3.U形:c//d,24180(同旁内角形式) (2)条件中出现角平分线,有两种形式
AE平分DAC,则
c -
证明两个平面平行
证明两个平面平行证明两个平面平行的方法有:根据定义。证明两个平面没有公共点。由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常用反证法证明
-
证明两个平面平行
证明两个平面平行证明两个平面平行的方法有: 根据定义。证明两个平面没有公共点。 由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常用反证法证
-
直线和平面平行与平面与平面平行证明题专题训练
直线和平面平行与平面与平面平行证明题专题训练E是AA1的中点,求证:AC1、、如图,在正方体ABCDA1BC11D1中,1//平面BDE。A1D1B1EAB2、如图:平行四边形 ABCD 和平行四边形 CDEF有一
-
直线与平面平行的教案
5.1平行关系的判定
---直线与平面平行的判定
高一朱丽珍
【教学目标】
1. 理解并掌握直线与平面平行的判定定理
2. 把线面平行关系(空间问题)转化为线线平行关系(平面问题)
3. -
直线与平面平行说课
《直线和平面平行》说课稿
一。教材分析
本节课主要学习直线和平面平行的定义,判定定理以及初步应用。其中,线面平行的定义是线面平行最基本的判定方法和性质,它是探究线面平行 -
直线与平面平行的性质导学
§2.2.3直线与平面平行的性质
班级:姓名:
【学习目标】
1.理解直线与平面平行的性质定理的含义.
2.会用图形、文字、符号语言准确地描述直线与平面平行的性质定理,并知道其
地位 -
直线与平面平行预习案(最终5篇)
安丘市第一中学高一数学预习案编制人:辛虹
数学必修21.2.2直线与平面平行(预习案)【学习目标】:1.通过预习,初步掌握空间直线与平面的位置关系,直线与
平面平行的判定定理。
2.记 -
直线与平面平行判定定理说课稿
直线与平面平行说课稿一、教材分析本节课是在人教版数学必修二第二章第二节直线与平面平行的判定。主要学习直线和平面平行的判定定理,以及初步应用。它与前面所学习的平面几
-
高二数学教案:9.3直线和平面平行与平面和平面平行
【课题】直线和平面平行与平面和平面平行 【教学目标】 进一步理解、掌握直线和平面平行的判定与性质;以及它们的应用。 【教学重点】两个平面平行的性质. 【教学难点】性
-
两直线平行相关证明题目(5篇)
两直线平行的证明方法1.垂直于同一直线的各直线平行。2.同位角相等,内错角相等或同旁内角互补的两直线平行。3.平行四边形的对边平行。4.三角形的中位线平行于第三边。5.梯形
-
《直线与平面平行的判定》教学设计
直线与平面平行的判定(谢永福)一、教学目标 1.会找出平行的直线和平面 2.会应用判定定理证明线面平行 3.逐步学会逆向思维 4.归纳证明线线平行的方法:中位线,相似,平行四边形 二
-
《直线与平面平行的判定》的教学反思
《直线与平面平行的判定》的教学反思本人于2008学年第一学期第十一周周五下午代表市89中高一数学备课组在113中学上了一节区内研讨课,课后老师们进行了评议。本人非常感谢各
-
直线平面平行的判断及其性质的说课材料
一。教材分析
本节课主要学习直线和平面平行的定义,判定定理以及初步应用。其中,线面平行的定义是线面平行最基本的判定方法和性质,它是探究线面平行判定定理的基础,线面平行的 -
《2.2.3直线与平面平行的性质》教案
《2.2.3直线与平面平行的性质》教案 一、教学内容: 新人教版高一数学 必修2 第二章 第二节 第3课 二、教材分析: 直线与平面问题是高考考查的重点之一,求解的关键是根据线与面
-
直线平行问题
直线平行问题求解思路一、从角考虑
通过证明被第三条直线截得的同位角相等、内错角相等、同旁的内角互补确定两直线平行
二、从线考虑
证明两直线同垂直(或者同平行)另一条直