第一篇:谈分类讨论方法在数学解题中的应用
谈分类讨论方法在数学解题中的应用
【摘要】分类讨论是贯穿整个中学数学的一种重要的解题方法,是对问题进行局部攻坚,再突破全局的解题策略。
【关键词】分类讨论;方法;解题;应用
【中图分类号】g623.5【文献标识码】a【文章编号】2095-3089(2012)12-0248-02
分类讨论是一种重要的数学思想方法,几乎涉及中学数学内容的各个部分,不仅在探索解题思路方面有着重要作用,而且在提高学生的素质,培养学生良好的数学思维品质方面也有重要的作用。分类讨论是在“合中分,分中合”的辩证思想指导下,运用各种数学手段,吧整体化为局部,把复杂问题化为简单问题,以便“分而治之”、“各个击破” 也就是是对问题进行局部攻坚,再突破全局的解题方法或策略。
第二篇:高中数学解题方法谈:浅谈分析法在解题中的应用
88397854.doc
浅谈分析法在解题中的应用
分析法是数学中常用到的一种直接证明的方法,从推理的程序上来讲,它是一种从未知到已知(从结论到题设)的逻辑推理方法,具体说,就是先假定问题的结论成立,再利用公理、定义、定理和公式,经过正确的、严谨的一步步地推理,最后得到一个显然成立的关系,即已证的命题或题设的已知条件,从而判定问题的结论成立。分析法的应用较广,通常在几何、三角、不等式的证明中经常采用。举例说明。
例1下面是真命题还是假命题,用分析法证明你的结论。命题:若abc且abc0,则
解:此命题是真命题。
因为abc0,abc,a0,c0。baca23。
要证bac
a
223成立,只要证bac23a,22即证bac3a,也就是证(ac)ac3a,2即证(ac)(2ac)0
因为ac0,2ac(ac)aba0
所以(ac)(2ac)0成立。
故原不等式成立。
评注:应用分析法证题时,语气总是假定的,通常的语气有:“若要证明A,则先证明B;若要证明B,则先证明C,……”或“若要A成立,必先B成立;若要B成立,必先C成立,……”。值得注意的是,在证明过程中从一个命题推到下一个命题时,必须注意它们之间的等效性。
例2求证:当一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大。
证明:设圆正方形的周长为l,则圆的面积为(因此,本题只须证明:(l22)()。24l22),正方形的面积为()。24ll
为了证明上式成立,只须证明:
4l2l422l216,两边同乘以正数,得1
14。
88397854.doc
因此,只须证明4。因为上式是成立的,所以(l22)()。24l
这就证明了如果一个圆和一个正方形的周长相等,那么圆的面积比正方形的面积大。例3已知、k
2(kZ),且
sincos2sin①
sincossin2② 1tan21tan
2求证:1tan2
2(1tan2。)
证明:因为(sincos)22sincos1,所以将①、②两式代入上式,得:4sin22sin21
1tan22
另一方面,要证
1tan21tan,2(1tan2)
sin2
1sin21
cos2cos2
即证
sin2,1sin2
cos22(1
cos2)
即证cos2sin21
2(cos2sin2),即证12sin21
2(12sin2),即证4sin22sin21,由于上式与③式相同,于是问题得证。
③
第三篇:分类讨论思想在解数学题中的应用
数学解题中的思考
------分类讨论思想的应用
【摘要】解数学问题往往可以有众多的思想方法,如转化化归,数形结合,分类讨论,数学建模等等,而在这些思想方法中分类讨论是一种重要的数学思想,学习数学的过程经常会遇到分类问题,如数的分类,图形的分类,代数式的分类等等,在研究数学问题中常常需要通过分类讨论解决问题,本文从渗透在教材中的分类思想出发,结合例题阐述了分类讨论的思想,分类的原则,分类讨论的应用,从而体现分类讨论思想在初中数学解题中的作用和地位。
【关键词】分类讨论的思想分类的原则分类讨论的应用
数学课程标准明确提出数学思想方法是数学基础知识的重要组成部分,数学教学中如何挖掘课本中所蕴含的数学思想方法,如何有效的进行数学思想方法教学,如何培养和发展学生的数学思想已经成为数学教育工作者普遍关注和潜心探索的一项重要课题。在新课程中,分类思想在教材中的体现是丰富多彩的,在整个初中阶段很多问题都用了分类的思想,将不同的事物分为不同的种类,寻找它们各自的共同点及内在的规律性。
一. 分类讨论的思想
所谓分类讨论就是分别归类再进行讨论的意思,数学中的分类过程就是对事物共性的抽象过程,解题时要使学生体会为什么要分类,如何分类,如何确定分类的标准,在分类的过程如何认识事物的属性,如何区分不同事物的不同属性,通过多次反复的思考和长时间的积累,使学生逐步感悟分类是一种重要的思想,它体现了化整为零,化零为整与归类整理的思想,它:揭示着数学事物之间的内在规律,学会分类有助于学生总结归纳所学的知识,使所学的知识条理化,提高思维的概括性,从而提高分析问题和解决问题的能力。
我们在运用分类讨论的思想解决问题时,首先要审清题意,认真分析可能产生的不同因素,进行讨论时要确定分类的标准,每一次分类只能按照一个标准来分,不能重复也不能遗漏,另外还要逐一认真解答。我们平时在解决问题时还经常碰到这样的情况,当问题解答到某一步骤后,需要按一定的标准来分为若干个子问题进行讨论,这样常常可以使问题化繁为简,更清楚地暴露事物的属性。
案例1:某服装厂生产一种西装和领带。西装每套定价200元,领带每条定价40元,厂方在开展促销活动期间向顾客提供两种优惠方案。方案一:买一套西装送一条领带,方案二:西装领带均按定价打9折(两种优惠方案不可同时采用)某店老板要去厂里购买20套西装和若干条领带(超过20条)请帮店老板选择一种较省钱的购买方案?
分析:因为已知条件中未明确购买领带的数量,因而较省钱的购买方案也是不确定的,而是由不同的领带购买数量决定的解:设店老板需购买领带x条
方案一购买需要付款200×20+(x-20)×40=40x+3200(元)
方案二购买需要付款(200×20+40x)×0.9=36x+3600(元)
假设 y=(40x+3200)-(36x+3600)= 4x-400(元)
(1)当y<0时,即20<x<100,方案一比方案二省钱
(2)当y=0时,即x=100,方案一和方案二同样省钱
(3)当y>0时,即x>100,方案二比方案一省钱
答:当购买领带超过20条而不到100条时,方案一省钱,当购买领带等于100条时,两种方案一样省钱,当购买领带超过100条时,方案二省钱
二. 分类的原则
分类讨论必须遵循一定的原则进行,在初中阶段我们经常用到以下几个原则
1.同一性原则
分类应该按照同一标准进行,即每次分类不能同时使用几个不同的分类依据,否则会出现重复的现象,例如有些同学认为三角形可以分为等腰三角形,等边三角形,锐角三角形,钝角三角形,直角三角形,这样的分类是错误的,不但以边来分类而且以角来分类,等腰三角形可以是锐角三角形,钝角三角形或直角三角形,这样的分类犯了标准不同的错误
2.互斥性原则
分类后的每一个子类应该具备互不相容的原则,即不能出现有一项既属于这一类又属于那一类。例如学校举行运动会,规定每个学生只能参加一项比赛,初一六班的6名同学报名参加100和200米的赛跑,其中有4人参加100米比赛,3人参加200米比赛,那么就有1人既参加100米又参加200米比赛,这道题目分类的互斥性原则
3.完整性原则
分类后的每一个子类合并起来应该等于总类,否则会出现遗漏的现象。例如某人把实数分为正实数和负实数,这样的分类是不完整的,因为零也是实数,但是零既不是正实数也不是负实数。
4.多层性原则
分类后的子类还可以继续再进一步分类,直到不能再分为止。例如实数可以分为有理数和无理数,有理数可以分为整数和分数,整数可以分为正整数,零和负整数
三. 分类讨论的应用
我们用分类讨论的思想解决问题的一般步骤是:
(1)先明确需讨论的事物及讨论事物的取值范围
(2)正确选择分类的标准,进行合理的分类
(3)逐类讨论解决
(4)归纳并作出结论
下面浅谈一下分类讨论在初中阶段的一些简单的应用:
1.分类讨论在应用题中的应用
案例2:学校建花坛余下24米漂亮的小围栏,经总务部门同意,初一五班的同学准备在自己教室后的空地上建一个一面靠墙,三面利用这些围栏的花圃,请你设计一下,使花圃的长比宽多3米,求出花圃的面积是多少?
分析:因为已知条件中并没有明确长和宽的位置,所以需要对长和宽的位置进行讨论 解:(1)假设平行于墙的一边为长x米,则宽为(x-3)米,依题意可列方程
x+2(x-3)=24
解方程得x=10
经检验,符合题意
长为10米,宽为7米,面积为70平方米
(2)假设垂直于墙的一边为长x米,则宽为(x-3)米,依题意可列方程
2x+(x-3)=24
解方程得x=9
经检验,符合题意
长为9米,宽为6米,面积为54平方米
答:当平行于墙的一边为花圃的长时花圃的面积是70平方米,当垂直于墙的一边为花圃的长时花圃的面积是54平方米。
学生在解此类题的错误往往是因为不认真审题,没有弄清已知条件中的各种可能情况
而急于解题所造成,只有审清了题意,全面系统地考虑问题,才可以确定出各种可能情况,解答此类问题就不会造成漏解
2.分类讨论在绝对值方程中的应用
关于绝对值的问题,往往要将绝对值符号内的代数式看成一个整体,将这个整体分为正数,负数,零三种,再分别进行讨论。
案例3:求方程 ︳x﹢2︳﹢︳3﹣x︳= 5的解
分析:本题应该对于代数式 ︳x﹢2︳应分为x=﹣2,x﹥﹣2,x﹤﹣2,对于︳3﹣x︳应分为x=3,x﹥3,x﹤3,把上述范围画在数轴上可见对这一问题应划分以下三种情况分别讨论
解:①当x≦﹣2时,原方程变为﹣﹙x﹣2﹚﹢3﹣x=5,解得x=0与x≦﹣2产生矛盾,故在x﹤﹣2时原方程无解
②当﹣2﹤x≦3时,原方程为x﹢2﹢3﹣x=5恒成立,故满足2﹤x≦3的一切实数x都是此方程的解
③当x﹥3时,原方程为x﹢2﹣﹙3﹣x﹚=5,解得x=3这与x﹥3产生了矛盾,故在x﹥3时原方程无解
综上所述,原方程的解是满足2﹤x≦3的一切实数。
3.分类讨论在解含有参数问题中的应用
所有含有参数的问题都要进行分类讨论,而且要对参数的不同取值范围分类讨论,不能有重复和遗漏。
案例4:若关于x的分式方程xa31无解,求a的值 x1x
解:方程两边同乘以x﹙x﹣1﹚,得﹙x﹣a﹚x﹣3﹙x﹣1﹚=x﹙x﹣1﹚
整理得﹙a﹢2﹚x=3
①当a﹢2=0即 a=﹣2时,方程无解,则原方程也无解
②当x=1时方程无解,此时a﹢2=3,得a=1
③当x=0时方程无解,此时﹙a﹢2﹚×0=3无解
综上所述,a的值为1或﹣2
4.分类讨论在解几何题中的应用
分类讨论思想在几何题中有广泛的应用,在有关点与线的位置关系,直线与直线的位置关系,直线与圆的位置关系,圆与圆的位置关系,等腰三角形等的题目中都需要进行分类讨论。案例5:等腰三角形中,有一个角是另一个角的4倍,求等腰三角形的一个底角的度数? 分析:本题应该分为底角是顶角的4倍和顶角是底角的4倍两种情况进行讨论
解:(1)当一个底角的度数为x度,顶角是4x度时
依题意列方程x﹢x﹢4x=180解得x=30,底角等于30度
(2)当一个底角的度数为4x度,顶角是x度时
依题意列方程4x﹢4x﹢x=180解得x=20,底角等于80度
综上所述,等腰三角形的底角为30度或者80度。
5.分类讨论在解概率题中的应用
在求简单事件的概率时,我们通常会用“列表”或者是“画树状图”的方法来列举所有机会均等的结果,然后找出该事件所包含的结果,从而求出该事件发生的概率。事实上“列表”或者是“画树状图”的方法就是分类讨论的思想方法最直接的体现。
案例6:同时抛掷3枚普通的硬币一次,问得到“两正一反”的概率是多少
分析:每一个硬币都有正面和反面,我们可以用画树状图的方法分析先抛第一枚,再抛第二
枚,最后抛第三枚,可知共有8种机会均等的结果它们是(正正正)(正正反)(正反正)(反正正)(反反正)(反正反)(正反反)(反反反),其中两正一反的结果有3种,可以求得概率是八分之三。
6.分类讨论在解函数题中的应用
分类讨论的思想方法贯穿于初中阶段学过的所有的函数中,一次函数y=kx﹢b﹙k≠0﹚要对k,b取值范围进行分类讨论,反比例y=
2k﹙k≠0﹚函数要对k的取值范围进行分类讨论,x二次函数y=ax﹢bx﹢c﹙a≠0﹚要对a的取值范围进行分类讨论
案例7:求二次函数y=ax﹢﹙3﹣a﹚x﹢1﹙a≠0﹚与x轴只有一个交点,求a的值与交点坐标
解:①当a=0时,此函数为一次函数y=3x﹢1与x轴只有一个交点,交点坐标是(-21,0)3
2②当a≠0时,此函数是二次函数,因二次函数与x轴只能有一个交点则判别式为零﹙3﹣a)﹣4a = 0
解得a=1或a=9
当a=1时,与x轴的交点坐标是(﹣1,0)
当a=9时,与x轴的交点坐标是(【结语】分类讨论思想的应用非常广泛,涉及到初中的全部知识点,这里不能一一列举出来,分类讨论思想的关键是分清引起分类的原因,明确分类讨论的事物和标准,按可能出现的所有情况做出准确分类,再分门别类加以求解,最后将各类结论综合归纳,得出正确答案。数学中的分类思想是一种比较重要的数学思想,通过加强数学分类思想的训练,有利于提高学生对学习数学兴趣,培养学生思维的条理性,缜密性,科学性,这种优良的思维品质对学生的未来必将产生深刻和久远的影响。
参考文献:
(1)2011年版义务教育数学课程标准
(2)任百花:初中数学思想方法教学研究
(3)江国安:初中数学综合题的教学探索
(4)赵峰:浅谈分类讨论思想在解题中的应用
(5)王奎文:增强中学生的数学应用意识 1,0)3
第四篇:法向量在立体几何解题中的应用
龙源期刊网 http://.cn
法向量在立体几何解题中的应用
作者:魏庆鼎
来源:《理科考试研究·高中》2013年第08期
高中数学教材引进了向量知识以后,为我们解决数学问题提供了一套全新的方法——向量法.向量法在解决求立几中的角和距离两大问题中,是行之有效的方法,它解决了以前旧版教材立几中的这两个难点.在旧版教材中,运用几何法解决这两类问题,要通过“作”、“证”、“求”,既要有较强的空间想象能力,又要求学生对空间中,线、面之间的判定、性质等定理非常熟悉并能熟练应用,对学生,特别是中下水平的学生是一大难点.而现在向量法则很好解决了这个难点,所以它对人们研究立几问题有着普及的意义.同时向量法对立几中的线面平行和线面垂直、面面垂直和面面平行等位置关系的证明,也非常简便.空间向量的引入使立体几何的解题变得直观、易懂.而“法向量”的灵活应用,给解决空间问题提供了一个很方便、实用的工具,会使我们在高考中快捷地解决立体几何问题.以下是本人在教学过程中总结出来的关于“法向量”在立体几何中的一些应用.现把教学中得到的这些方法进行归类,供同行参考.4.用法向量求二面角平面角的大小
求二面角的平面角的大小可先求出两个平面的法向量;则两法向量的夹角与二面角的平面角相等或互补.此时,观察二面角的平面角为锐角还是钝角,视情况而定.(注:在证明面面平行或面面垂直时,也可采用此法.如两面的法向量共线,即两平面平行;如两平面的法向量垂直,即两平面垂直)从以上的一些例题中,我们不难看出“法向量”这一特殊工具在立体几何的解题中的优越性.但在具体做题中,我们还应对不同的题型选择更便捷的方法去做,视自己对知识掌握的情况而定.
第五篇:极限思想在解题中的应用
Email:hb_yuerf@sohu.com个人简介:岳儒芳毕业于河北师范大学中学一级教师教育硕士
极限思想在解题中的应用
河北省石家庄市第十九中学岳儒芳
数学研究的对象可以是特殊的或一般的,可以是具体的或抽象的,可以是静止的或运动的,可以是有限的或无限的,它们之间都是矛盾的对立统一.正是由于对象之间的对立统一,为我们解决这些对立统一事物提供了研究的方法.有限与无限相比,有限显得具体,无限显得抽象,对有限的研究往往先于对无限的研究,对有限个对象的研究往往有章法可循,并积累了一定的经验.而对于无限个对象的研究,却往往不知如何下手,显得经验不足.于是将对无限的研究就转化成对有限的研究,就成了解决无限问题的毕经之路.反之当积累了解决无限问题的经验之后,可以将有限问题转化成无限问题来解决.这种无限化有限,有限化无限的解决数学问题的方法就是有限与无限的思想.
在数学教学过程中,虽然开始学习的数学都是有限的数学,但其中也包含有无限的成分,只不过没有进行深入的研究.在学习有关数及其运算的过程中,对自然数、整数、有理数、实数、复数的学习都是研究有限个数的运算,但实际上各数集内元素的个数都是无限的,以上数集都是无限集.对图形的研究,知道直线和平面都是可以无限延展的.在解析几何中,还学习过抛物线的渐进线,已经开始有极限的思想体现在其中.学习了数列的极限和函数的极限之后,使中学阶段对无限的研究又上了一个新台阶,集中体现了有限和无限的数学思想.使用极限的思想解决数学问题,比较明显的是立体几何中求球的体积和表面积,采用无限分割的方法来解决.实际上先进行有限次分割,然后再求和,求极限,我们认为,这是典型的有限与无限数学思想的应用.
函数是对运动变化的动态事物的描述,体现了变量数学在研究客观事物中的重要作用.导数是对事物变化快慢的一种描述,并由此可进一步处理和解决函数的增减、极大、极小、最大、最小等实际问题,是研究客观事物变化率和最优化问题的有力工具.通过学习和考查,可以体验研究和处理不同对象所用的不同数学概念和相关理论以及变量数学的力量.
例1.函数ylog2xlogx(2x)的值域是()
(A)(,1](B)[3,)(C)[1,3](D)(,1][3,)
【分析】选D.
法1:用极限的思想.∵函数定义域为{x|x
当x
120且x1}.当x时,y,∴可排除B,C; 时,y1,∴可排除A.故选D.
log2x1
log2x1法2:函数变形为y
求出.
例2.过抛物线y
p,设tlog2x,则t0,再作出“对勾”函数的图象,数形结合即可ax2(a0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是 和q,则
1p1
q等于()
2a(A)4a(B)
【分析】选A.(C)2a(D)4a
(法1)取a2(不可取a1,否则,A,D两项的值均等于4),得焦点F(0,的直线PQ∥x轴,易知p
q
14,1p1q
84
218),过F再作特殊位置,故选A.(选择图形的某一个特殊位置,可得到相关的数
或式的特殊关系,而特殊位置图形的选择往往又与选取适当的特殊值和特殊点有关.)
(法2)用极限的思想即:画出图形,使PQ绕点F旋转,使点P与点O重合即可求出. 例3.设A1、A2是椭圆
A2P
2x
9
y
1的长轴的两个端点,P1、P2是垂直于A1A2的弦的端点,则直线A1P1与
交点的轨迹方程为()(A)
x
9
y
1(B)
y
x
1
(C)
x
y
1
(D)
y
x
1
【分析】选C.(法1)设p1(3cos,2sin),P2(3osc
,2nis),由椭圆得A1(3,0),
A2(3,0),直线A1P1为y
3tan
2x2tan
2,直线A2P2为y
cot
x2cot
3(cottantan
),∴交点M中,x
cot
3cos
2tan
,y
22tan2tan
cos2,∴(x3)
(y2)
sec
tan
1,即
x
y
1
.选C.
0
(法2)利用极限的思想即当P1P2恰是短轴的两个端点时,则两直线无交点,即说明当x曲线方程无解.结合选项可判断选C.
例4.直三棱柱ABC
BAPQC
A1B1C1的体积为V
时,所求的,P、Q分别为侧棱AA,CC上的点,且AP
A
1CQ,则四棱锥
C1的体积是()
12V
B1
(A)(B)
3V
(C)
4V
(D)
5V
P
Q
【分析】选B.
(法1)用极限的思想,即令点P与点A1重合,点Q与C重合,则四棱锥
BAPQC
A
B
C
就变成三棱锥B
APQ,再根据等体积法VBAPQ
VPABC
即可求出.
(法2)可分别取AA,CC的中点P,Q,同时令三棱柱中所有棱长为2,很容易就可算出.
例
5、已知1分析:令x
x10,则(lgx)2,lgx2,lg(lg
1,lgx
x)的大小关系为___________.
x)0
10,则(lgx)
22,lg(lg,大小关系为
lg(lgx)(lgx)
lgx
.
例6、2005年10月15日,我国成功发射神州五号载人航天飞船,若飞船的运行轨道是以地球的中心为一个焦点的椭圆,且其近地点距离地面为m千米,远地点距地面n千米,则该飞船运行轨道的短轴长为()[已知地球半径为R千米]
(A)
(mR)(nR)
(B)
2(mR)(nR)
(C)mn(D)2mn
分析:选B.
考虑问题的极限情形,m
而将m
n0,n0,则符合题意的椭圆表现为圆,于是轨道的短轴长表现为圆的直径2R,代入各选择分支,仅有B适合,于是正确答案只能是B.
例
7、设n为自然数,求证不等式
19125
1(2n1)
.
时,不等式右边是一个常量,而左边从k变为
许多学生会利用数学归纳法证明,但是,当证明n
k1
k1
时却在不断增大,证明难度较大.然而,把
1(2n1)
1(2n1)1(看成数列{an},则上述不等式可转化为数列求和,
12n119125)
因此想到利用数列极限进行求解.因为
12(1
131315
12n1
12n1)
22n1,所以有下式:
1(2n1)
1912
125lim
1(2n1)
,两边同时取极限,则
lim[
n
]
2n2n1
.
n
在上例中,将不等式的项与数列相联系,用极限求和的方法为解决不等式证明问题拓宽了思路,简便了计算过程.另外,极限思想与特殊化原则的结合,可对某些较复杂的问题极端化处理,使解题过程化难为易.因此,教师应该在课堂教学中帮助学生归纳和总结极限思想在解题中的运用,但不能把对极限的运用局限在解微积分的题目中,应该认识到,通过极限思想,能有效地将数学各部分内容系统地联系起来,有利于学生从整体上把握数学的本质.
高考中对有限与无限的考查才刚刚起步,并且往往是在考查其他数学思想和方法的过程中同时考查有限与无限的思想.例如,在使用由特殊到一般的归纳思想时,含有有限与无限的思想;在使用数学归纳法证明时,解决的是无限的问题,体现的是有限与无限的思想,等等.随着高中课程的改革,对新增内容的考查在逐步深入,必将加强对有限与无限思想的考查,设计出重点体现有限与无限思想的新颖试题.