专题:导数运算法则教学设计
-
导数的概念教学设计
《导数的概念》教学设计 1. 教学目标 (1)知识与技能目标:掌握导数的概念,并能够利用导数的定义计算导数. (2)过程与方法目标:通过引入导数的概念这一过程,让学生掌握从具体到抽象,特
-
常用函数的导数教学设计
几个常用函数的导数教学设计 一、课题引入 情境一:我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数yf(x),如何求它的
-
导数零点教学设计(精选5篇)
一、 《利用导数探究函数零点个数问题》教学设计 激趣入境: 问题:试说出函数fxx22x3的零点 设计意图:引出零点的概念,并由简单问题使学生回忆函数零点、方程根、函数图像交点之
-
导数教学经验交流(推荐)
“整体建构”下导数教学 如果说高中数学是一座山峰,需要每个学子去攀登,那么导数无疑是阻碍在前方的悬崖峭壁之一,既充满挑战,又让许多同学望而却步。退却等于失败,而攀上峭壁更
-
1.2导数的计算 教学设计 教案大全
教学准备 1. 教学目标 (1)用导数定义,求函数的导数. (2)能用基本初等函数的导数公式和导数运算法则求简单函数的导数. (3)理解变化率的概念,解决一些物理上的简单问题,培养学生的
-
3.2 导数的计算 教学设计 教案
教学准备 1. 教学目标 知识与技能 1.能够用导数的定义求几个常用函数的导数,会利用它们解决简单的问题. 2.能根据基本初等函数的求导公式,求简单函数的导数. 过程与方法 使学
-
1.1变化率与导数 教学设计 教案
教学准备 1. 教学目标 (1)理解平均变化率的概念. (2)了解瞬时速度、瞬时变化率、的概念. (3)理解导数的概念 (4)会求函数在某点的导数或瞬时变化率. 2. 教学重点/难点 教学重点:瞬
-
3.1 变化率与导数 教学设计 教案
教学准备 1. 教学目标 知识与技能 1.理解平均变化率的概念. 2.了解瞬时速度、瞬时变化率、的概念. 3.理解导数的概念 4.会求函数在某点的导数或瞬时变化率. 过程与方法 理
-
1.1变化率与导数 教学设计 教案
教学准备 1. 教学目标 知道了物体的运动规律,用极限来定义物体的瞬时速度,学会求物体的瞬时速度掌握导数的定义. 2. 教学重点/难点 【教学重点】: 理解掌握物体的瞬时速度的
-
2014高考导数
2014高考导数汇编
bex1
(全国新课标I卷,21)设函数f(x)aelnx,曲线yf(x)在点(1,f)处的xx
切线方程为ye(x1)2
(I)求a,b;
(II)证明:f(x)1
(全国新课标II卷,21)已知函数f(x)exex2x
(I)讨论f(x -
导数证明题
题目:已知x>1,证明x>ln(1+x)。
题型:
分值:
难度:
考点:
解题思路:令f(x)=x-ln(1+x)(x>1),根据它的导数的符号可得函数f(x)在
1)=1-ln2>0,从(1,+ )上的单调性,再根据函数的单调性得到函数f -
导数总结归纳大全
志不立,天下无可成之事!
类型二:求单调区间、极值、最值
例三、设x3是函数f(x)(xaxb)e
(1) 求a与b的关系式(用a表示b)
(2) 求f(x)的单调区间
(3) 设a0,求f(x)在区间0,4上的值域23x的一个 -
利用导数比较大小(教学反思)
利用导数比较大小(教学反思)
本节课重点探讨了构造函数,利用导数及函数的单调性求函数最值比较大小的方法,旨在解决比较函数大小,证明不等式,讨论两函数图像关系等问题。由于本节 -
“导数的概念(起始课)”的教学设计、反思与点评[精选]
“导数的概念(起始课)”的教学设计、反思与点评 1教学预设1.1教学标准 (1)通过情境的介绍,让学生知道导数的实际背景,体验学习导数的必要性; (2)通过大量的实例的分析,让学生知道
-
高中数学教学论文 导数及其应用教学反思
湖北省宜昌市第十八中学高中数学教学论文 导数及其应用教学反思 1.反思“变化率问题”课堂教学的新课引入 导数的几何意义就是切线的斜率,因此贯穿“导数及其应用”的主线是
-
一.导数的应用教学反思
一、学习目标 1、知识与技能(1)掌握利用导数研究函数的单调性、极值、闭区间上的最值的方法步骤。 (2)初步学会应用导数解决与函数有关的综合问题。 2、过程与方法 体验运用导数
-
成人高考—导数习题
2003年 (10)函数y2x3x21在x1处的导数为 (A)5 (B)2 (C)3 (D)4 2004年 (15)f(x)x33,则f= (A)27 (B)18 (C)16 2005年 (17)函数yx(x1)在x2处的导数值为(25)已知函数(fx)x4mx25,且f(2)24 (Ⅰ)求m的值
-
导数证明不等式
导数证明不等式一、当x>1时,证明不等式x>ln(x+1)f(x)=x-ln(x+1)f'(x)=1-1/(x+1)=x/(x+1)x>1,所以f'(x)>0,增函数所以x>1,f(x)>f(1)=1-ln2>0f(x)>0所以x>0时,x>ln(x+1)二、导