专题:二次函数练习答案
-
二次函数练习
二次函数练习
1,函数fxx2bxc,对于任意tr,均有f2xf2x则f1,f2,f4,的大小关系是_____________________
2,二次函数yax24xa3的最大值恒为负,则a的取值范围是________________------ 3,二 -
二次函数练习
练习【动动手、动动脑,让我们课堂更精彩!】 1.如图,抛物线y=x2-2x-3与x轴交A、B两点,与y轴交于D点.直线l与抛物线交于A、C两点,其中C点的横坐标为2. 填空:A点坐标为( , );B点坐标
-
二次函数练习
26.1二次函数(第二课时)练习班级:_______姓名:_______一、请准确填空1、假设函数y=(k2-4)x2+(k+2)x+3是二次函数,那么k______.2、函数y=,当k=______时,它的图象是开口向下的抛物线
-
二次函数练习1-8
二次函数练习八
1、 当x=1时,二次函数y=3x2-x+c的值是4,则C=_________
2、 二次函数y=x2+c经过点(2,0),则当x= -2时,y=____________
3、 抛物线y=(k-1)x2+(2-2k)x+1,那么此抛物线的 -
二次函数习题及答案
基础达标验收卷 一、选择题: 1.(2003•大连)抛物线y=(x-2)2+3的对称轴是. A.直线x=-3 B.直线x=3 C.直线x=-2 D.直线x=2 2.(2004•重庆)二次函数y=ax2+bx+c的图象如图,则
-
二次函数练习题及答案
二次函数练习题 一、选择题: 1.下列关系式中,属于二次函数的是(x为自变量) A. B. C. D. 2. 函数y=x2-2x+3的图象的顶点坐标是 A. (1,-4)B.(-1,2)C. (1,2)D.(0,3) 23. 抛物线y
-
二次函数
2.二次函数定义__________________________________________________二次函数(1)导学案
一.教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围 -
二次函数
?二次函数?测试一.选择题〔36分〕1、以下各式中,y是的二次函数的是()A.B.C.D.2.在同一坐标系中,作+2、-1、的图象,那么它们()A.都是关于轴对称B.顶点都在原点C.都是抛物线开口向上D.以上
-
二次函数配方法练习(推荐阅读)
1.抛物线y=2x2-3x-5配方后的解析式为顶
点坐标为______.当x=______时,y有最______值是______,与x轴的交点是______,与y轴的交点是______,当x______时,y随x增大而减小,当x______时,y随x增 -
九年级二次函数综合测试题及答案
二次函数单元测评 一、选择题(每题3分,共30分) 1.下列关系式中,属于二次函数的是(x为自变量)() A. B. C. D.2. 函数y=x2-2x+3的图象的顶点坐标是() A. (1,-4)B.(-1,2)C. (1,2)D.(
-
二次函数解析式专项练习(精选5篇)
二次函数解析式专项练习一般式:y=ax2+bx+c(a≠0) 顶点式:y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点坐标 两根式:y=a(x-x1)(x-x2)(a≠0),其中x1、x2是抛物线与x轴的两个交点的横
-
二次函数综合题
二次函数综合题 如图所示,在直角坐标系中,A(-1,0),B(3,0),C(0,3) 1.用三种方法求出经过A B C三点的抛物线解析式2.抛物线的顶点坐标为D( ) 3.求△ABC的面积,求四边形ACDB的面
-
《二次函数 》教案
命题人:刘英明 审题人:曹金满 课型:新授课《二次函数 》教案学习重点:通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.学习难点:理解二次函数的概念,掌握
-
二次函数教案
二次函数教案 本资料为woRD文档,请点击下载地址下载全文下载地址20.1二次函数一、教学目标: .知识与技能: 通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模
-
《二次函数》说课稿
《二次函数》说课稿
课题:22.1 二次函数(第一节课时)
一、教材分析:
1、教材所处的地位:
二次函数是沪科版初中数学九年级(上册)第22章的内容,在此之前,学生在八年级已经学过了函数及 -
二次函数(精选五篇)
配方法:用配方法解方程ax2+bx+c=0 (a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+2=- +2
方程左边成为一 -
二次函数教学内容
二次函数 考点1:二次函数的图像与性质、图象与系数的关系 1. 二次函数的定义:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。当b=c=0时,y=ax2(a≠0)叫做最简二次函数。
-
二次函数说课稿
26.1.1二次函数y=ax的图像说课稿
1. 说教材
本节内容是人民教育出版社出版的九年级《数学》下第26章第一节第二课时的内容。在此之前,学生已学习了二次函数的概念,对于函数的