专题:解三角形测量距离问题
-
测量距离
测量距离,在战场上的用处最大,在简易测绘中最为重要,方法也最多。在这里,我们只能拣些最简单实用的讲一讲。 1. 步测 每人都有一副灵便的尺子,随时带在身边,使用起来十分方便。这
-
备课资料(1.2.1 解三角形 解决有关测量距离的问题)利用余弦定理证明正弦定理
备课资料
利用余弦定理证明正弦定理
在△ABC中,已知a2=b2+c2-2bccosA,b2=c2+a2-2cacosB,c2=a2+b2-2abcosC, 求证:a
sinA
2bsinB2csinC. bca
2bc
22222证明:由a=b+c-2bcc -
第一章 解三角形
第一章 解三角形章节总体设计(一)课标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习
-
解三角形公式[大全]
1、正弦定理:在C中,a、b、c分别为角、、C的对边,R为C
的外接圆的半径,则有
2、正弦定理的变形公式:①
② sinA=sinB=sinC=
③ a:b:c=
④ a -
解三角形(大全5篇)
第七章解三角形一、基础知识在本章中约定用A,B,C分别表示△ABC的三个内角,a, b, c分别表示它们所对的各边长,pabc2为半周长。absinB12csinC1.正弦定理:sinA=2R(R为△ABC外接圆半径)
-
测量三角形螺纹(大全)
项目四 螺纹的测量 任务一 测量三角形螺纹 【课题名称】 外螺纹中径的测量 【教学目标与要求】 一. 知识目标 了解检测螺纹加工精度的常用几种方法。 二. 能力目标 掌握螺纹中
-
解斜三角形简单练习
一、自主梳理1.正弦定理:abc===2R,其中R是三角形外接圆半径. sinAsinBsinC222222b2c2a22.余弦定理:a=b+c-2bccosA,b=a+c-2accosB,cosA=.2bc111absinC=bcsinA=acsinB,S△=S(Sa)(
-
解三角形教学反思
解三角形教学反思 解三角形教学反思1 掌握直角三角形的边角关系并能灵活运用;会运用解直角三角形的知识,利用已知的边和角,求未知的边和角;能结合仰角、俯角、坡度等知识,综合运
-
经纬仪测量导线对地距离
如何用经纬仪测量导线对地距离和交跨距离?
测量方法是:
(1)在被测点或交叉点正下方立塔尺(特别注意安全距离)。
(2)在线路旁边或大交叉角的近似平分线上(测交跨中)架好仪器,读取视 -
5.示范教案(1.2.1 解决有关测量距离的问题)
1.2 应用举例 1.2.1 解决有关测量距离的问题 从容说课 解斜三角形知识在实际问题中有着广泛的应用,如测量、航海等都要用到这方面的知识.对于解斜三角形的实际问题,我们要
-
《利用三角形全等测距离》教案
《利用三角形全等测距离》教案 教学目标 一、知识与技能 1.能利用三角形的全等解决“测量不可到达的两点间的距离”的实际问题; 2.能在解决实际问题的过程中进行有条理的思考和
-
解三角形专项题型及高考题
题型1:利用正余弦定理判断三角形形状两种途径:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理
-
老师教案12 解三角形
教案12:解三角形(2) 一、课前检测 1. 在ABC中,根据下列条件解三角形,其中有两个解的是 A.b10,A45,C70B.a60,c48,B60C.a7,b5,A80D.a14,b16,A452.在△ABC中,已知B30,b503,c150,那么这个三角形一定是
-
解三角形应用举例教案(推荐)
解三角形应用举例教案 ●教学目标 知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语 过程与方法:首先通过巧妙的设
-
解三角形研究性学习报告5则范文
《解三角形的进一步讨论》 ——研究性学习报告 研究班级:高二(12)班 小组组长:张学栋 小组成员:唐亮 钱智年 徐金玉 史子军 刘晶琳 陈敬荣 张金年 赵峒山 李超 丁晓瑞秦海龙 指导
-
高中数学必修五——第一章 解三角形
翱翔教学工作室学学习目标 1、回顾已有的三角形边角知识; 2、通过“作高法”、“等积法”、“外接圆法”、“向量法”等多种方法证明正弦定理; 3、学会运用正弦定理解任意三角
-
高中数学试题:解三角形单元复习题
解三角形单元复习题
一、选择题(本大题共10小题,每小题5分,共50分)
1.在△ABC中,一定成立的是
A.asinA=bsinBB.acosA=bcosBC.asinB=bsinAD.acosB=bcosA
2.在△ABC中,cos(A-B)+sin(A+B)=2,则△ -
解三角形的教学反思5篇
解三角形的教学反思 三角形中的几何计算的主要内容是利用正弦定理和余弦定理解斜三角形,是对正、余弦定理的拓展和强化,可看作前两节课的习题课。本节课的重点是运用正弦定理