专题:立体几何平行经典例题
-
立体几何线面平行问题
线线问题及线面平行问题一、知识点 1 1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何一个平面内,没有公共点; ..2.公理4 :推理模式:a//b,b//ca//c
-
立体几何三视图及线面平行经典练习
立体几何三视图例1、若某空间几何体的三视图如图所示,则该几何体的体积是 (A)2(B)1(C)2 31(D) 3例2、一个几何体的三视图如图,该几何体的表面积是(A)372(B)360(C)292(D)280例3、如图1,△ ABC为
-
立体几何的平行与证明问题
立体几何1.知识网络一、 经典例题剖析考点一 点线面的位置关系1、设l是直线,a,β是两个不同的平面 A.若l∥a,l∥β,则a∥β B.若l∥a,l⊥β,则a⊥βC.若a⊥β,l⊥a,则l⊥β D.若a
-
立体几何平行证明题常见模型及方法[定稿]
立体几何平行证明题常见模型及方法 证明空间线面平行需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。②立体几何论证题的解答中,利用题设条
-
高中立体几何证明平行的专题训练
1. 如图,四棱锥P-ABCD的底面是平行四边形,点E、F分别为棱AB、 PD的中点.求证:AF∥平面PCE;2、如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+3,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的
-
高中立体几何证明平行的专题(五篇范文)
高中立体几何证明平行的专题(基本方法)一、利用三角形及一边的平行线a.利用中位线b.利用对应线段成比例(a)、利用中位线例1、如图,ABCD是正方形,O是正方形的中心,E是PC的中点。
-
高中立体几何证明平行的专题训练)
高中立体几何证明平行的专题训练深圳市龙岗区东升学校——罗虎胜立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1) 通过“平移”
-
高一立体几何平行垂直证明基础练习
高一垂直证明基础练习专项1、点线面位置关系判定问题解题方法与技巧:在判定点线面的位置关系时,通常有两个切入点(1)集合:点、线点、面的位置关系从集合的从属关系来判定;线、面都
-
立体几何中线面平行垂直性质判定2012五篇范文
2012考前集训高频考点立体几何考纲解读必须掌握空间中线面平行、垂直的有关性质与判定定理判定定理1.如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平
-
立体几何中平行与垂直的证明(5篇模版)
立体几何中平行与垂直的证明姓名2.掌握正确的判定和证明平行与垂直的方法.D1【学习目标】1.通过学习更进一步掌握空间中线面的位置关系;例1.已知正方体ABCD—A1B1C1D1, O是底A
-
立体几何垂直和平行的证明练习题(共5则)
1.下列命题正确的是………………………………………………A.三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两条相交直线确定一个平面2.若直线a不平
-
高中立体几何中线面平行的常见方法
高中立体几何证明平行的专题训练立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法:(1) 通过“平移”。(2) 利用三角形中位线的性质。(3)
-
立体几何中线面平行的经典方法+经典题(学生用)
高中立体几何证明平行的专题(基本方法)立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法:通过“平移”。利用三角形中位线的性
-
2013届高三数学专题——立体几何(二)线面平行与垂直
2013届高三数学专题——立体几何(二)线面平行与垂直一、定理内容(数学语言)(1)证明线面平行(2)证明面面平行(3)证明线面垂直(4)证明面面垂直二、定理内容(文字语言与数学图形)(1)证明线面平
-
立体几何中的向量方法----证明平行与垂直练习题
§8.7 立体几何中的向量方法(Ⅰ)----证明平行与垂直一、选择题1.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则.A.l1∥l2B.l1⊥l2C.l1与l2相交但不垂直D.以上均不正确2.直线l1,l2相
-
8.7 立体几何中的向量方法Ⅰ——证明平行与垂直
§8.7 立体几何中的向量方法Ⅰ——证明平行与垂直(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1. 已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)若aa分别与AB,AC垂直,则向量a为A.1
-
立体几何2018高考
2018年06月11日青冈一中的高中数学组卷 一.选择题(共11小题) 1.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图
-
教案 立体几何
【教学过程】 *揭示课题 9 立体几何 *复习导入 一、点线面的位置关系 1 点与直线的位置关系:Aa Aa 2.点与面的位置关系: A A 3.直线与直线的位置关系:平行 相交 异面 4直线