专题:数列复习提升题
-
数列复习
一、等差数列的判定
1、利用定义法进行判定:数列复习若数列an满足:anan1d,n2,nNan1and,nN*a为等差数列 nn*a为等差数列 例题1、在数列{an}中,a1=-3,an=2an-1+2n+3(n≥2,且n∈N*).
求 -
数列题
k已知数列an中的相邻两项a2k1,a2k是关于x的方程x2(3k2k)x3k20的两个根,且
a2k1≤a2k(k1,2,3,).
(I)求a1,a2,a3,a7;
(II)求数列an的前2n项和S2n; (Ⅲ)记f(n)1sinn3, 2sinn
(1)f(2)(1)f(3)(1)f(4 -
数列复习4-5
数列复习(4)
主要内容:等比数列的定义、通项公式、性质、前n项和公式
一、等比数列的通项公式
例1、(1)已知数列{an}中,a3=2,a2+a4=20/3/求an
(2)a2+a5=18,a3+a6=9,an=1,求n
二、等 -
数列高考复习
2012届知识梳理—数列1a(n2k)112n(kN*),记bna2n1,1、(河西三模)设数列{an}的首项a1,且an124a1(n2k1)n4n1,2,3,(I)求a2,a3;(II)判断数列{bn}是否为等比数列,并证明你的结论;(III)证明b13b25
-
数列极限复习
数列极限复习题姓名242n1、lim=; n139(3)nan22n1a2、若lim(2n)1,则=; nbn2b1an3、如果lim0,则实数a的取值范围是;n2an4、设数列{an}的通项公式为an(14x),若liman存在,则x的取值范
-
数列第二轮复习
数列第二轮复习
考点一:等差、等比数列的概念与性质 例一:题型一:证明等差数列以及错位相减法 例1:在数列an中,a11,an12an2n. (Ⅰ)设bnan.证明:数列bn是等差数列; 2n1
(Ⅱ)求数列an的前n项 -
数列不等式题[全文5篇]
数列不等式综合题示例例1 设等比数列an的公比为q,前n项和Sn0(n1,2,) (Ⅰ)求q的取值范围; (Ⅱ)设bn3an2an1,记bn的前n项和为Tn,试比较Sn与Tn2
41n12例2设数列an的前n项的和Snan22•, -
数列重点与提升[精选5篇]
数列重点与提升一、数列研究办法1、特殊数列:等差等比数列的定义、性质和相关公式要熟练,要有转化为特殊数列的意识并熟练证明之.2、如何认识数列?先研究其主要性质:周期性、单
-
数列综合复习课教案
数列综合复习课教案2007.12.6文卫星例1 填空题在各项都为正数的等比数列an中,首项a1=3 ,前三项和为21,则a3a4a5=___ ; 设Sn是等差数列an的前n项和,已知S636,Sn324,Sn6144(n
-
数列与推理证明检测题
2013届高三寒假作业数学章节检测(5)一 选择题()2.已知等差数列an的前项和为Sn,若M,N,P三点共线,O为坐标原点,且ONaOM15aO(P直线MP不过点O),则S20等于() 6A.15B.10C.40D.203.数列{an}中,a1
-
3透视2013年高考数列题
透视2013年高考数列题童其林一、命题分析数列是高中代数的重要内容之一,在整个高中数学中,它处于数学知识和数学方法的汇合点,数、式、方程、函数、简易逻辑、算法、三角、不
-
数列专题
数列专题朱立军1、设数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1). (1)求数列{an}的通项公式an;(2)设数列 1a 的前n项和为T11n,求证:nan+15≤Tn<42、设数列a2n1n满足a1+3a2+3a3+…+3an=n3,a∈N*
-
数列复习教案(例题加模拟题)1
数列 一.知识结构 数列与自然数 通项公式 集的关系 递推公式 数列的 定义 定义
-
高三一轮复习:数列求和教案及练习
数列求和 特殊数列求和 1.可化为等差数列等比数列自然数列的求和 1)2n1的前100项和为_____________, 2) 1aa2an__________ 3) 求9,99,999,9999,….的前100项和 4)求2nn1的前2m的和
-
高三数学专题复习——数列不等式(放缩法)
高三数学专题复习——数列不等式(放缩法)教学目标:学会利用放缩法证明数列相关的不等式问题 教学重点:数列的构造及求和 教学难点:放缩法的应用证明数列型不等式,因其思维跨度大、
-
16届高一理科数列检测题答案
参 考 答 案
1、A2、A3、B4、C5、D6、A7、624;8、52;9、2;10、①②
11、解 ∵a3+a13=2a8,a3+a8+a13=12,∴a8=4,
a3+a13=8,a3=1,a3=7,则由已知得解得或 a3a13=7,a13=7,a13=1.
a13-a37-13334由a3=1,a13=7 -
数列不等式结合的题的放缩方法
数列不等式结合的题的放缩方法 2011-4-6 11:51 提问者:makewest | 悬赏分:20 | 浏览次数:559次 2011-4-6 11:53 最佳答案 放缩法一般来说是高考的难点 要求又比较强的观察力计
-
高考数列题,想说爱你也容易
龙源期刊网 http://.cn
高考数列题,想说爱你也容易 作者:钱军先
来源:《新高考·高三数学》2012年第01期