专题:数学函数导数高考题
-
高考数学专题:导数的综合运用高考题答案
导数的综合运用高考题26.【解析】(1)的定义域为,.(i)若,则,当且仅当,时,所以在单调递减.(ii)若,令得,或.当时,;当时,.所以在,单调递减,在单调递增.(2)由(1)知,存在两个极值点当且仅当.由于的两个极值
-
数学高考题
21.(2013·福建高考理科·T20)已知函数f(x)sin(wx)(w0,0)的周期
为π,图象的一个对称中心为错误!未找到引用源。,将函数f(x)图象上所有点的横坐标伸长到原来的 2倍(纵坐标不 -
构造函数解导数
合理构造函数解导数问题 构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键。 例1:
-
高二数学2-2导数中构造函数
1.已知f(x)为定义在(,)上的可导函数,且f(x)f(x) 对于任意xR恒成立,则A. fe2f(0),
B. fe2f(0),
C. fe2f(0),
D. fe2f(0),
1.A
【解析】解:因为f(x)为定义在(,)上的可 -
函数导数不等式测试题五篇
昌乐二中 高三 数学自主检测题函数、导数、不等式综合检测题2009.03.20注意事项:1.本试题满分150分,考试时间为120分钟.2.使用答题卡时,必须使用0.5毫米的黑色墨水签字笔书写,作图
-
常用函数的导数教学设计
几个常用函数的导数教学设计 一、课题引入 情境一:我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数yf(x),如何求它的
-
函数与导数综合问题
龙源期刊网 http://.cn
函数与导数综合问题
作者:
来源:《数学金刊·高考版》2013年第06期
深化导数在函数、不等式、解析几何等问题中的综合应用,加强导数的应用意识.
本考点 -
导数--函数的极值练习题
导数--函数的极值练习题
一、选择题
1.下列说法正确的是
A.当f′(x0)=0时,则f(x0)为f(x)的极大值 B.当f′(x0)=0时,则f(x0)为f(x)的极小值 C.当f′(x0)=0时,则f(x0)为f(x)的 -
高二数学导数与导函数的概念教案
高二数学导数与导函数的概念教案 教学目标: 1、知识与技能:理解导数的概念、掌握简单函数导数符号表示和求解方法; 理解导数的几何意义; 理解导函数的概念和意义; 2、过程与方
-
2011北京一模数学函数导数综合试题小结
海淀理科 18. (本小题共13分) 已知函数f(x)xalnx,g(x)(Ⅰ)若a1,求函数f(x)的极值; (Ⅱ)设函数h(x)f(x)g(x),求函数h(x)的单调区间; (Ⅲ)若在1,e(e2.718...)上存在一点x0,使得f(x0)g(x0)成
-
函数的导数和它的几何意义
2.8 函数的导数和它的几何意义 8-A 函数的导数 前一节中描述的例子给出了引进导数概念的方法。我们从至少定义在x-轴上的某个开区间(a,b)内的函数f(x)开始,然后我们在这个区间
-
函数的和差积商的导数教案
函数的和差积商的导数教案 教学目的 1.使学生学会根据函数的导数的定义推导出函数导数的四则运算法则; 2.使学生掌握函数导数的四则运算法则,并能熟练地运用这些法则去求由基本
-
几种常见函数的导数教案
几种常见函数的导数教案 教学目的 使学生应用由定义求导数的三个步骤推导四种常见函数的导数公式,掌握并能运用这四个公式正确求函数的导数. 教学重点和难点 掌握并熟记四种常
-
构造函数,结合导数证明不等式
构造函数,结合导数证明不等式 摘 要:运用导数法证明不等式首先要构建函数,以函数作为载体可以用移项作差,直接构造;合理变形,等价构造;分析(条件)结论,特征构造;定主略从,减元构造;挖掘
-
构造函数,利用导数证明不等式
构造函数,利用导数证明不等式湖北省天门中学薛德斌2010年10月例1、设当xa,b时,f/(x)g/(x),求证:当xa,b时,f(x)f(a)g(x)g(a).例2、设f(x)是R上的可导函数,且当x1时(x1)f/(x)0.求证:(1)f(
-
2012高考题
2012年河北普通高等学校对口招生考试
语文
一、单项选择Ⅰ(每小题2分,共24分)
1.下列词语中加点的字,读音不全都相同的一组是A.远岫.刺绣.衣袖.秀.外慧中乳臭.未干B.晋.升灰烬.觐.见进.退两 -
第二章与第三章:函数导数与导数的应用
第二章与第三章:函数导数与应用1、求函数在一点的导数
例如:设函数f(x)xcosx,则f'(0)?
2、讨论函数yx在定义域范围内的单调性
3、记住结论:
函数在某点不可导,函数所表示的曲线在 -
高中数学构造函数解决导数问题专题复习
高中数学构造函数解决导数问题专题复习【知识框架】【考点分类】考点一、直接作差构造函数证明;两个函数,一个变量,直接构造函数求最值;【例1-1】(14顺义一模理18)已知函数(Ⅰ)当时,