专题:向量表示三角形中的心

  • 三角形四心的向量表示

    时间:2019-05-14 11:22:26 作者:会员上传

    从动和静两个角度看三角形中四“心”的向量表示平面几何中中三角形的四“心”,即三角形的内心、外心、重心、垂心。在引入向量这个工具后,我们可以从动和静两个角度看三角形

  • 三角形内心的向量表示形式

    时间:2019-05-14 15:55:15 作者:会员上传

    三角形内心的向量表示形式 有这样一个高考题: 已知O,N,P在ABC所在平面内,且OAOBOC,NANBNC0,且PAPBPBPC,则点PCPAO,N,P依次是ABC的( ) (A)重心 外心 垂心 (B)重心 外心 内心 (C)外心 重心 垂

  • 三角形“五心”的充要条件的向量表示

    时间:2019-05-14 15:55:14 作者:会员上传

    三角形“五心”的充要条件的向量表示 江苏省姜堰中学张圣官(225500) 让我们先来赏析一道颇有趣的向量题: 命题1:在ΔABC内任取一点O,证明:SAOASBOBSCOC0 „①(其中SA、SB、SC分别表

  • 三角形的四心的向量表示[推荐5篇]

    时间:2019-05-12 06:54:44 作者:会员上传

    222(1)O为ABC的外心OAOBOC.外心(三条边垂直平分线交点) (2)O为ABC的重心OAOBOC0.重心(三条边中线交点) (3)O为ABC的垂心OAOBOBOCOCOA.垂心(高线交点)(4)O为ABC的内心aOAbOBcOC0.内心(角平分

  • 向量与三角形的重心

    时间:2019-05-13 06:37:32 作者:会员上传

    向量与三角形的重心例1 已知A,B,C是不共线的三点,G是△ABC内一点,若GAGBGC0.求证:G是△ABC的重心.证明:如图1所示,因为GAGBGC0,所以GA(GBGC).以GB,GC为邻边作平行四边形BGCD,则有GDGBGC,所

  • 平面向量的坐标表示教案范文

    时间:2019-05-12 23:21:47 作者:会员上传

    平面向量共线的坐标表示 教学目的: (1)理解平面向量的坐标的概念; (2)掌握平面向量的坐标运算; (3)会根据向量的坐标,判断向量是否共线. 教学重点:平面向量的坐标运算 教学难点:向量的坐

  • 数学 -复数的向量表示 -数学教案

    时间:2019-05-12 23:10:48 作者:会员上传

    教学目标 (1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量; (2)理解并掌握复数集、复平面内的点的集合、复平面内以原点为起点的向量集合之间的一一对应关系

  • 向量中的三角形心的问题

    时间:2019-05-14 15:55:14 作者:会员上传

    向量中的三角形“四心”问题 学习向量的加减法离不开三角形,三角形的重心、垂心、内心、外心是三角形性质的重要组成部分,你知道它们的向量表示吗?你能证明吗?下面的几个结论也

  • 不等式 向量解三角形复习(推荐5篇)

    时间:2019-05-13 06:37:28 作者:会员上传

    一、不等式的解法:1.一元一次不等式:Ⅰ、axb(a0):⑴若a0,则;⑵若a0,则;Ⅱ、axb(a0):⑴若a0,则;⑵若a0,则;2.一元二次不等式:a0时的解集与有关(数形结合:二次函数、方程、不等式联系) 3. 高

  • 向量与三角形四心的一些结论

    时间:2019-05-14 15:55:15 作者:会员上传

    【一些结论】:以下皆是向量 1 若P是△ABC的重心 PA+PB+PC=0 2 若P是△ABC的垂心 PA•PB=PB•PC=PA•PC(内积) 3 若P是△ABC的内心 aPA+bPB+cPC=0(abc是三边) 4 若P是△ABC的外

  • 三角形外心、重心、垂心的向量形式

    时间:2019-05-13 13:18:01 作者:会员上传

    三角形外心、重心、垂心的向量形式已知△ABC,P为平面上的点,则(1)P为外心(2)P为重心(3)P为垂心证明 (1)如P为△ABC的外心(图1),则 PA=PB=PC,(2)如P为△ABC的重心,如图2,延长AP至D,

  • 平面向量平行的坐标表示教案(精选五篇)

    时间:2019-05-12 23:21:46 作者:会员上传

    8.3.2平面向量平行的坐标表示 教学目标:复习巩固平面向量坐标的概念,掌握平行向量充要条件的坐标表示,并且能用它解决向量平行(共线)的有关问题。 教学重点:平行向量充要条件的坐

  • 专题二向量的坐标表示和空间向量基本定理

    时间:2019-05-13 06:37:00 作者:会员上传

    第7课时专题二向量的坐标表示和空间向量基本定理 任务1点共面问题例1. 已知A、B、C三点不共线,对平面外一点O,在下列条件下,点P是否一定与A、B、C共面?(1);(2)例2. 若点M在平面ABC内,

  • 向量与三角形内心、外心、重心、垂心知识(★)

    时间:2019-05-15 07:58:51 作者:会员上传

    向量与三角形内心、外心、重心、垂心知识的交汇一、四心的概念介绍(1)重心——中线的交点:重心将中线长度分成2:1;(2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(

  • 平面向量中的三角形四心问题(定稿)

    时间:2019-05-14 15:55:15 作者:会员上传

    平面向量中的三角形四心问题 向量是高中数学中引入的重要概念,是解决几何问题的重要工具。本文就平面向量与三角形四心的联系做一个归纳总结。在给出结论及证明结论的过程中,

  • 三角形外心内心重心垂心与向量性质

    时间:2019-05-14 15:55:16 作者:会员上传

    三 角 形 的“四 心” 所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。当三角形是正三角形时,四心重合为一点,统称为三角形的中心。 一、三角形的外心 定 义:三角形

  • 向量的概念及表示优秀教案(精选多篇)

    时间:2019-05-13 01:12:25 作者:会员上传

    向量的概念及表示 执教:张亮 点评:孔凡海 【教学目标】 一、通过对实例的引入,了解向量概念产生的实际背景; 二、理解平面向量和向量相等的概念; 三、掌握向量的几何表示; 四

  • 平面向量数量积的坐标表示教学反思.doc范文

    时间:2019-05-15 03:21:21 作者:会员上传

    《平面向量数量积的坐标表示、模、夹角》教学反思 1、本节课先是通过对相关知识的回顾,然后引进与x轴、y轴方向相同的两个单位向量,进一步探索两个向量数量积的坐标表示。最后