专题:等差数列的学案
-
学案:等差数列及和
等差数列及其前n项和
一.高考考纲
1.考查运用基本量法求解等差数列的基本量问题.掌握等差数列的定义与性质、通项公式、前n项和公式等.
2.考查等差数列的性质、前n项和公式及综合 -
等差数列复习学案
友好三中高一数学学案设计人:刘磊组长审核:设计时间:2009-3-1 讲授时间:等差数列复习一、学习目标:1、通过学案能灵活运用通项公式求等差数列的首项、公差、项数、指定项,并通过通
-
2.2.1等差数列(学案3)
2.2.1等差数列(学案3)
一.基础知识 1.等差数列
2.通项公式
3.等差中项
4.证明方法
5.判定方法
二.例题
1.已知数列an的通项公式an3n5,这个数列是等差数列吗?2.已知等差数列10,7,4,…. -
等差数列一轮复习导学案
等差数列考纲要求1.了解等差数列与一次函数的关系.2.理解等差数列的概念.3.掌握等差数列的通项公式与前n项和公式;能在具体的问题情境中,识别数列的等差关系,并能运用有关知识解决问
-
2.2.1等差数列的性质(学案4)
2.2.1等差数列的性质(学案4)
一、基础知识 1、等差数列定义
2、等差通项公式
3、等差数列性质
(1)若mnpq2t,则(2)若数列an是等差数列,则
数列ak,akm,ak2m,……成等差,公差为数列kanb是等 -
等差数列专题
等差数列的运算和性质专题复习【方法总结1】(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公
-
高三等差数列及前n项和导学案
《等差数列及其前n项和》导学案班级_______课时时间________
学习目标
1.理解等差数列的概念,会用定义证明一个数列是等差数列; 2.能利用等差中项、通项公式与前 n 项和公式列方 -
2.3等差数列前n项和学案(小编整理)
2.3.1等差数列前n项和学案(第一课时)
姓名:班级:日期:【学习目标】
1. 掌握等差数列前n项和公式及其获取思路;
2. 会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题. -
如何证明等差数列
如何证明等差数列设等差数列an=a1+(n-1)d最大数加最小数除以二即/2=a1+(n-1)d/2{an}的平均数为Sn/n=/n=a1+(n-1)d/2得证1三个数abc成等差数列,则c-b=b-ac^2(a+b)-b^2(c+a)=(c
-
等差数列及习题
等差数列
通项公式 a(n)=a+(n-1)×d项数n=(末项-首项)/公差+1,是正整数,等差数列的首项和公差已知,那么,这个等差数列就确定了。从通项公式可以看出,a(n)是n的一次函数(d≠0)或 -
等差数列教案(精选)
等差数列教案
一、 教材分析
从教材的编写顺序上来看,等差数列是必修五第二章的第二节的内容,一方面它是数列中最基础的一种类型、与前面学习的函数等知识也有着密切的联系,另 -
《等差数列》说课稿
《等差数列》说课稿 《等差数列》说课稿1 一、说教材等差数列为人教版必修5第二章第二节的内容。数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作
-
等差数列说课稿
等差数列说课稿 等差数列说课稿1 首先,我对本教材进行分析。一、说教材的地位和作用《等差数列》是选自北京师范大学出版社普通高中课程标准实验教科书数学必修5的第一章数列
-
等差数列作业
等差数列作业
1.在等差数列an中,若
a4a6a8a10a12120,则2a10a12__.
2.等差数列an中,若a1510,a4590,则a60_.
3.在等差数列中,已知a 5 10a,1231求首项与公差.4.梯子的最高一级宽3 -
等差数列知识点
精英辅导学校杨景勋专用2011年12月16日星期五
(一)等差数列I1、等差数列{an}中,a1=1,公差d=3,an=2005则n=_____
2、等差数列{an}中,若a4+a6+a8+a10+a12=120,则2a10-a12的值为______ -
等差数列练习
等差数列练习
一、选择题
1.在等差数列{an}中,a1=21,a7=18,则公差d=
A.12B.13C.-12D.-13
2.在等差数列{an}中,a2=5,a6=17,则a14=
A.45B.41C.39D.37
3.已知数列{an}对任意的正整数n,点Pn(n,an)都在 -
等差数列说课稿
《等差数列》说课稿各位领导、各位专家,你们好!
我说课的课题是《等差数列》。我将从以下五个方面来分析本课题:
一、教材分析
1.教材的地位和作用:
《等差数列》是北师大版新课 -
《等差数列》检测
高2011届《等差数列》单元检测
班级姓名
一、选择题(每小题5分,共25分)
1、设数列{an}的通项公式为an=n2-5n+4,则数列{an}开始递增的最小项是
A、a1B、a2C、a3D、a2和a3
2、已知