专题:高中立体几何证明题
-
立体几何证明题[范文]
11. 如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=1,D是棱2AA1的中点(I)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.2. 如图5所示,在四棱锥PAB
-
立体几何证明题举例
立体几何证明题举例(2012·江苏)如图,在直三棱柱ABCA1B1C1中,A1B1=A1C1,D、E分别是棱BC、CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点. 求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F
-
高三立体几何证明题训练
高三数学 立体几何证明题训练班级姓名1、如图,在长方体ABCDA1B1C1D1中,AA1ADa,AB2a,E、F分别为C1D1、A1D1的中点. (Ⅰ)求证:DE平面BCE;(Ⅱ)求证:AF//平面BDE.D1FEC1A1CBAABCDA1B1C1D1的底
-
高中立体几何
高中立体几何的学习高中立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。立体几何是中学数学的一个难点,学生普遍反映“几何比代数难
-
高中数学立体几何常考证明题汇总
新课标立体几何常考证明题1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点(1) 求证:EFGH是平行四边形(2) 若BD=AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD所成
-
高中数学立体几何常考证明题汇总 - 副本
立体几何常考证明题汇总答案1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点 (1) 求证:EFGH是平行四边形(2) 若BD=AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD
-
2011届高考数学立体几何证明题
空间直线、平面的平行与垂直问题一、“线线平行”与“线面平行”的转化问题,“线面平行”与“面面平行”的转化问题知识点:一)位置关系:平行:没有公共点.相交:至少有一个公共点,必有
-
高中数学立体几何常考证明题汇总1
2、如图,已知空间四边形ABCD中,BCAC,ADBD,E是AB的中点。 求证:(1)AB平面CDE;(2)平面CDE平面ABC。证明:(1)EBCACCEABAEBEBADBD同理,DEABAEBE又∵CEDEE∴AB平面CDE (2)由(1)有AB平面CDECD又∵A
-
立体几何平行证明题常见模型及方法[定稿]
立体几何平行证明题常见模型及方法 证明空间线面平行需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。②立体几何论证题的解答中,利用题设条
-
必修2 立体几何证明题 详解(五篇)
迎接新的挑战!必修2 证明题一.解答题(共3小题)1.(2006•北京)如图,在底面为平行四边形的四棱锥P﹣ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.(1)求证:PB∥平面AEC;(2)求二面角E﹣AC﹣B的大
-
高中几何证明题
高中几何证明题1、(本题14分)如图5所示,AF、DE分别世O、O1的直径,AD与两圆所在的平面均垂直,AD8.BC是O的直径,ABAC6,OE//AD. D(I)求二面角BADF的大小;(II)求直线BD与EF所成的角.
-
高中几何证明题
高中几何证明题如图,在长方体ABCD-A1B1C1D1中,点E在棱CC1的延长线上,且CC1=C1E=BC=1/2AB=1.求证,D1E//平面ACB1求证,平面D1B1E垂直平面DCB1证明:1):连接AD1,AD1²=AD²+DD1²=
-
高中立体几何常用结论、定理
立体几何中的定理、公理和常用结论 一、定理 1.公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 若A∈l,B∈l,A∈,B∈,则l⊂. 2.公理2如果两个平面有
-
高中立体几何证明方法
高中立体几何一、平行与垂直关系的论证由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定
-
高中立体几何初步小结(定稿)
立体几何证明初步总结 ①、三个公理和三个推论: 这是判断几点共线(证这几点是两个平面的公共点)和三条直线共点(证其中两条直线的交点在第三条直线上)的方法之一。 ②、证明线线
-
高中立体几何教案5篇
高中立体几何教案 第一章 直线和平面 两个平面平行的性质教案 教学目标 1.使学生掌握两个平面平行的性质定理及应用; 2.引导学生自己探索与研究两个平面平行的性质定理,培养和发
-
浅谈高中立体几何的学习方法
浅谈高中立体几何的学习方法高三数学组邓雪芹升入高中后,面对新的课程,新的知识,新的学习方法很多学生多会感到无所适从,尤其是在高中立体几何方面颇感头疼。中学阶段我们接触的
-
学生版 高中数学立体几何常考证明题汇总
立体几何常考证明题汇总1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点(1) 求证:EFGH是平行四边形(2) 若BD=AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD所成的